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Recently, an evolutionary game dynamics model taking into account the environmental feedback has
been proposed to describe the co-evolution of strategic actions of a population of individuals and the
state of the surrounding environment; correspondingly a range of interesting dynamic behaviors have
been reported. In this paper, we provide new theoretical insight into such behaviors and discuss control
options. Instead of the standard replicator dynamics, we use a more realistic and comprehensive model
of replicator-mutator dynamics, to describe the strategic evolution of the population. After integrating
the environment feedback, we study the effect of mutations on the resulting closed-loop system
dynamics. We prove the conditions for two types of bifurcations, Hopf bifurcation and Heteroclinic
bifurcation, both of which result in stable limit cycles. These limit cycles have not been identified in
existing works, and we further prove that such limit cycles are in fact persistent in a large parameter
space and are almost globally stable. In the end, an intuitive control policy based on incentives is
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applied, and the effectiveness of this control policy is examined by analysis and simulations.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction

Evolutionary game theory studies the evolution of strategic
decision-making processes of individuals in one or multiple pop-
ulations. A range of mathematical models have been extensively
investigated, among which the replicator dynamics model is the
most well-known (Hofbauer & Sigmund, 1998). Powerful theories
and tools originating from evolutionary game theory facilitate
the study of complex system behaviors of biological, ecologi-
cal, social, and engineering fields (Komarova, 2004; Lee, Iwasa,
Dieckmann, & Sigmund, 2019; Nowak, Komarova, & Niyogi, 2001;
Pais, Caicedo-Nunez, & Leonard, 2013; Stella & Bauso, 2018). In
the classic game setting, the payoffs in each two-player game
are usually predetermined in the form of constant payoff ma-
trices. However, in many applications, especially those involving
common resources in the environment that are consumed by
groups of individuals, it is recognized that the payoffs can change
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over time or be affected directly by external environmental fac-
tors. Thus game-playing individuals’ decisions can influence the
surrounding environment, and the environment, especially its
richness in resources, also acts back on the payoff distributions,
which forms the so-called bi-directional game-environment feed-
back (Weitz, Eksin, Paarporn, Brown, & Ratcliff., 2016). Such a
feedback mechanism is believed to be able to explain rich real-
world complex population dynamics, including human decision-
making, social culture evolution, plant nutrient acquisition, and
natural resource harvesting. In particular, evolutionary dynamics
with game-environment feedback have attracted great attention
in recent years, due to its high relevance in biological and soci-
ological systems (Lee et al., 2019; Rand, Tomlin, Bear, Ludvig, &
Cohen, 2017; Tilman, Plotkin, & Akcay, 2020).

This line of research is originated in Weitz et al. (2016), where
the replicator dynamics of a two-player two-strategy game are
coupled with the logistic environment resource dynamics. Utiliz-
ing an elaborate environment-dependent payoff matrix, the joint
game-environment dynamics exhibit interesting system behav-
iors. In most cases, the strategic states of the population and the
environment converge to an equilibrium point on the boundary
of the phase space with the zero value of environment state,
which reflects the tragedy of the commons. The system dynamics
may also show cyclic oscillations which correspond to closed
periodic orbits. Particularly when the system dynamics converge
to a heteroclinic cycle on the boundary, the environment state
cycles between low and high values, which is referred to as the
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oscillating tragedy of commons. Since then, Weitz et al. (2016) has
been followed by several extensions and variations (Gong, Gao,
& Cao, 2018; Hauert, Saade, & McAvoy, 2019; Kawano, Gong, An-
derson, & Cao, 2019; Lin & Weitz, 2019; Muratore & Weitz, 2021;
Tilman et al., 2020). The game-environment feedback mechanism
has been studied more broadly in different applications, while its
theoretical settings have been adapted in different research direc-
tions, e.g. implementing different types of environment resource
models and considering the structures of the populations. New
meaningful dynamical behaviors have been identified, and these
results are in turn helpful to understand real-world applications.

The majority of the existing studies on the game-environment
framework chooses replicator dynamics to model the strategic
dynamics of the game-environment system. While the replicator
dynamics have been proved to be a powerful model in analyzing
a variety of classical games, they do not take into account the
mutation or exploration in strategies which exists ubiquitously in
biological and sociological systems. Genetic mutations typically
occur with small but non-negligible probabilities, and random
exploration of available strategies is common in behavioral exper-
iments (Traulsen, Hauert, Silva, Nowak, & Sigmund, 2009). Muta-
tions and explorations can be captured by allowing individuals to
spontaneously switch from one strategy to another in small prob-
ability, which results in the so-called replicator-mutator dynamics.
It has also played a prominent role in evolutionary game theory
and has been applied frequently in different fields (Komarova,
2004; Nowak et al., 2001; Pais et al., 2013; Pais & Leonard, 2011).

We note that although rich system behaviors, such as con-
vergence to equilibria or heteroclinic cycles on the boundary
and existence of neutral periodic orbits, have been identified in
related works, the results on the limit cycle dynamics have been
rarely reported in the game-environment feedback setting. Only
in Tilman et al. (2020), it is shown that the time-scale difference
between game and environment dynamics can result in limit
cycles. When mutations are taken into account, it is of great
interest to study if the coupled game and environment dynamics
can exhibit limit cycles.

We also emphasize that research on how to design reason-
able and effective control policies to achieve expected system
behaviors in evolutionary games has attracted increasing atten-
tion (Morimoto, Kanazawa, & Ushio, 2016; Riehl & Cao, 2017;
Riehl, Ramazi, & Cao, 2019; Zhu, Xia, & Wu, 2016). Specifically,
using game-environment feedback, Paarporn, Eksin, Weitz, and
Wardi (2018) considers optimal control problems where con-
trol takes the form of the incentives and opinions respectively.
The adopted control policies can maximize accumulated resource
over time. However, since the controlled system still exhibits
heteroclinic oscillations, repeated collapses of the resource are
inevitable. Wang, Zheng, and Fu (2020) considers adjusting the
law of feedback from population states to the environment based
on a slightly different co-evolutionary model of public goods
games. An involved nonlinear control law is proved to be able to
steer the system to evolve towards the designed behaviors, but
the biological implication of such control policies still remains
open to debate.

Motivated by all the unsolved issues just mentioned, in this
work we study the simultaneous co-evolution of game and en-
vironment using an integrated model consisting of replicator-
mutator dynamics and logistic resource dynamics. Although
similar linear environment-dependent payoff matrices have been
studied before, we focus on investigating the significant impact
of mutations on the overall system dynamics using bifurcation
theory as the main tool. In particular, we show that two different
types of bifurcations, which lead to limit cycles, can take place. In
sharp comparison to the marginal oscillating behaviors reported
before, such as neutral periodic orbits and heteroclinic cycles, we
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clarify that the identified limit cycle conditions correspond to a
large space of the mutation parameter and such limit cycles are
almost globally stable. In this sense, the limit cycle behavior is
robust and persistent, which agrees with biological observations.
Furthermore, when mutations are not too rare, the corresponding
limit cycle will not be close to the boundary, and consequently
the (oscillating) tragedy of commons can be averted.

Enabled by the new insight into co-evolutionary dynamics of
the game and environment, we consider further a simple but
effective incentive-based control policy, where the individuals
receive some external incentives in the game interactions if they
choose the cooperation strategy. It is shown that the controlled
system dynamics can converge to certain equilibria with a high
level of the environmental resource. Thus, the effectiveness of
the proposed control policy is guaranteed. Compared with the
proposed control policies in Paarporn et al. (2018) and Wang
et al. (2020), our proposed approach is not only more effective,
but also easier to implement than influencing the opinions of
the individuals or realizing more complicated feedback between
strategists and the environment.

Our preliminary conference paper (Gong, Yao, Gao, & Cao,
2020) considers Hopf bifurcation and limit cycles of the system
dynamics in a special case where the enhancement effect and the
degradation effect is balanced, but in this paper we consider gen-
eral bifurcation conditions and provide a comprehensive account
of the results. Moreover, the latter part about incentive-based
control of this paper is not in the conference version.

The remainder of this paper is organized as follows. Section 2
provides the framework of the co-evolutionary dynamics, and
introduces the integrated model with game-environment feed-
back. The analysis of system dynamics is presented in Section 3.
The incentive-based control is applied and its performance is
provided in Section 4. Finally, concluding remarks and discussion
points are given in Section 5.

2. Problem formulation

Co-evolutionary game and environment dynamics occur be-
cause evolutionary game dynamics are sometimes coupled with
the dynamics of the surrounding environment (see Fig. 1 for an
illustrative drawing). The coupled game and environment dynam-
ics form a closed-loop system, which consists of bi-directional
actions between the environment and the population’s game
play: an individual’s fitness depends on not only the population
state, but also the state of the environment, and the state of
the environment is influenced by the distribution of the choices
of strategies in the population. In the following subsections, we
will introduce each component of this system in turn, and then
integrate them to give a complete description of our model.

2.1. Environment-dependent payoffs

We consider games played in a changing environment, which
is characterized by the richness r € [0, 1] of a resource of interest;
such a resource has direct influence on the payoffs that players
receive. Correspondingly, the payoffs become dynamic and de-
pend on r. We consider a two-player game with two strategies,
Cooperation and Defection (C, D). Following Weitz et al. (2016),
we assume that the environment-dependent payoff matrix is
a convex combination of the payoff matrices from the classic
Prisoner’s Dilemma, i.e.,

A(r)=(1—r)[§: Iﬁ:]w[’% lsji]

_|Ri+ Ry —Rr S1+(S—Sy)r
- T1+(T2—T1)T Pi+ (P, —Py)r |’
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Fig. 1. The framework of evolutionary game dynamics with the environmental
feedback.

where Ri > T1,S51 > P,R, < T, and Sy < Py The entries
of A(r) represent the payoffs to the players at the given envi-
ronment state r. For example, a C player receives the payoff of
Ri1 + (R, — Ry)r and S; + (S, — Si)r when the opponent uses
strategies C and D, respectively. Because of the inequalities below

R, S Ry 5
I, P, and [T1 P

the prisoner’s dilemma and its inverse game, respectively. Note
that the payoff matrix A(r) is the linear interpolation between
the above two matrices. Thus, when r approaches 0 and 1, the
mutual cooperation and defection tend to be the Nash Equilibrium
of this dynamic game respectively. The biological interpretation
is that: the individuals tend to cooperate facing the depleted
environmental resource, and become more selfish and choose to
defect while the resource becomes abundant.

(1), the two matrices correspond to

2.2. Replicator-mutator equations

The two-player game governed by the payoff matrix A(r)in (1)
are played in a well-mixed and infinite population. We denote
the proportion of individuals choosing C by the variable x €
[0, 1]. Since there are only two strategies, the population state
can be represented by the vector x = [x 1 — x]'. Assume the
individuals with different strategies can mutate into each other
with an identical probability u € [0, 1]: a fraction of cooperators,
ux, spontaneously change to choose strategy D; a fraction of
defectors, (1 —x), change to choose strategy C at the same time.
We focus on the dynamics of x, which can be described by the
following replicator-mutator equation

% = X[(A(r)x)1 — xTA()X] — px + p(1 = x), (2)

where (A(r)X); is the first entry of A(r)x and represents the fitness
of choosing strategy C, and X' A(r)x is the average fitness at the
population state X. The term —ux represents the mutation from
strategy C towards D, while u(1—x) captures the mutation in the
opposite direction.

2.3. Closed-loop system with game-environment feedback

To model the evolution of the environmental change, we use
the standard logistic model

F=r(1-r)6x—(1-x)], 3)

Automatica 145 (2022) 110536

where the parameter 6 > 0 represents the ratio between the en-
hancement effect due to cooperation and degradation effect due
to defection. The influence of the population on the environment
state is captured by the function [6x — (1 —x)], and the dynamics
are restricted in the unit interval by (1 — r). When 6 = 1, the
enhancement effect and the degradation effect are balanced. And
if0 > 10or0 < 6 < 1, the enhancement effect is respectively
stronger or weaker than the opposite.

Substituting (1) into (2), and then combining with (3), we
obtain the closed-loop planar system describing the evolutionary
game dynamics under the game-environment feedback:

x =x(1—x)[xr(—c +d —a+b)+x(a—b)

—r(d+b)+ bl + u(1 — 2x) (4)
F=r(1-r)0x—(1-x),

where to simplify notations, we have used a = Ri—T;, b = S;—P;,
¢ =T, —Ry,and d = P, — S5, all of which are positive because
of the inequalities below (1). Note that system (4) reduces to the
model considered in Weitz et al. (2016) when u = 0. Therefore,
system (4) generalizes the previous model.

In view of the payoff matrix (1) and system Egs. (4), these four
parameters for re-parameterization have intuitive interpretations
with respect to strategy changes when the resource is either
abundant or depleted: the parameter a quantifies the incentive
to stick to strategy C given that all individuals are following
strategy C and the system is currently in a resource-poor state; b
quantifies the incentive to switch to strategy C when the resource
is depleted and all individuals enforce strategy D; in contrast,
¢ quantifies the incentive to switch to strategy D given that all
individuals enforce strategy C and the system is in a state of
sufficient resource; d quantifies the incentive to stick to strategy
D when the resource is abundant and all individuals are following
strategy D.

3. System dynamics and bifurcations

The state space of system (4) is the unit square Z = [0, 1]%. The
interior region of this square is denoted by int(Z) = (0, 1)?. Four
sides of the unit square form the boundary 9Z. For convenience
of exposition, we denote the four sides by:
Be={(x,r):x€[0,1],r =1},

By ={(x,r):x€[0,1],r =0},

B ={(x,r):x=0,r €0, 1]},

Br={(x,r):x=1,r €[0,1]}.

Then, one has 07 := B, UB, U B; U B,. It is easy to check that Z is
invariant under the dynamics (4) for all 4 € [0, 1] by Nagumo’s
theorem (Blanchini & Miani, 2008, Theorem 4.7).

System (4) can have equilibria in the interior int(Z); we call
them interior equilibria. System (4) also has equilibria on the
boundary 07 (boundary equilibria), which will be discussed in
detail in Section 3.4. It is easy to check that the interior equilibria,
if they exist, must lie on the line {(x, r) € int(Z) : x = 1/(6 + 1)}.
Substituting such x into the x-dynamics in (4), we have
0 =x(1—x)[xr(—c+d—a+b)

+ x(a — b) —r(d + b) + b] + (1 — 2x),
which leads to
_0a+60°b+u6>+6°—6-1)
- 6(a+c+6b+6d)
Thus if the following condition holds

—(Ba+6%b) < w(B>+ 6% -0 —1) < bc+ 6%, (6)

(5)
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system (4) has a unique interior equilibrium

() = 1 Oa+60%b+u@>+6%—-0-1)
’ 6+1 6(a+c+6b+6d)

Otherwise, no interior equilibrium exists. The interior equilibrium
supports the coexistence of the two strategies under a non-
depleted resource state. In view of (6), one can see that for a given
0, the existence of the interior equilibrium is determined by not
only the payoff parameters but also the mutation rate.

Note that when 6§ = 1, (x*, r*) is independent of the parameter
u, and (6) holds trivially for all « € [0, 1]. This specific case has
been studied in our previous conference paper (Gong et al., 2020).
In this paper we do not require 6 = 1 and study the generic 0 that
takes any positive value satisfying (6).

Towards the goal of establishing conditions for the existence
of limit cycles, we first present some preliminary results on the
non-existence of closed orbits or limit cycles.

(7)

3.1. Non-existence of closed orbits

First, we define the C' function ¢(x, ) : int(Z) — R by
o, 1) =x"(1—x)Pr’(1—ry (8)

with the parameters «, B, y, and § to be determined later.
Note that ¢(x, r) is strictly positive in int(Z) for any values of
these parameters. Denote the right hand side of (4) by f(x,r) =
[fi(x, 1), fo(x, 7)]T, and then the divergence of the modified vector
field ¢f (x, r) on int(Z) is given by

d(of1) (ef2)
ax (1) + ar

= ¢(x, TN(—(@ + B +3)(—c +d —a+b}’r
— (a4 B+ 3)a— b)x?
+[(—c+2d—a+2b)a+(d+b)p
— O+ 1)y +6+2)+2(—c+2d—a+ 2b)lxr (9)
+[(a—2b)a —bB + (0 + 1)(1 + y) + 2a — 4b]x
+[-(d+Dba+y+5+2-b—dr
(1 —2x)(a — ax — Bx)
x(1—x)
+(14+a)b—(14+y)—2un).

Let all the coefficients of the powers of x, r in (9) (except for the
term containing w) be zero, and we obtain the following set of
equations

div f(x, 1) = (x,1)

(¢+B+3)(—c+d—a+b)=0
(¢ +B+3)a—b)=0

(—c +2d — a+2b)x + (d + b)B
—O4+ 1)y +8+2)+2(—c+2d—a+2b)=0
(a—2b)x —bB+O+ 1)y +1)+2a—4b=0
—(d+ba+y+8+2—b—d=0.

We first show that the equation set (10) always has solutions.

Lemma 1. There always exist some «, 8, y, and § as solutions to
(10).

The proof is omitted here due to the space limit. See the full
version (Gong, Yao, Gao, & Cao, 2022) for the proof.

In fact, if one of —c +d —a+b and a — b is not zero, (10) will
have exactly one solution

Automatica 145 (2022) 110536

_ _ftcta
o
2 +c+
= +c a,
‘ (11)
_ —(a4+6+1)¢ +a*+ac—ab—bc
0+ 1) ’
s _(atc)ebtodtdta)+(0+1-a)

0+ 1)

with ¢ = a+c+6b+6d > 0. Otherwise, (10) will have infinitely
many solutions including (11). So we fix the parameters «, 3, v,
and § at the values given in (11) such that the divergence (9) can
be greatly simplified.

Then we show the non-existence of closed orbits for system

(4).

Lemma 2. For system (4), the following statements hold:

(1) when ad — bc > 0, there exists some pg > 0 such that there
are no closed orbits in T for u € [1o, 11;

(2) when ad — bc < 0, there are no closed orbits in T for p €
[0, 1];

(3) when ad — bc = 0, there are no closed orbits in Z for n €
(0, 1].

Proof. The proof is direct by applying Bendixson-Dulac cri-
terion (Wiggins, 2000, Theorem 4.1.2). Since the boundary 07
contains equilibria (as shown in Section 3.4), it is not possible to
have periodic orbits on it. And the sides are either invariant or
repelling, so they cannot intersect with closed orbits. Now let us
consider the interior int(Z) which is simply connected.

In view of the fact that «, 8, y, and § are given as in (11), one
can calculate the divergence of ¢f (x, 1)

div of (x, 1)
_ (1 = 20(3% + @)
—so(x,r)< PR +(14+a)h
(12)
—(1+V)—2M>
gt (MO o)
e X(1—x) 6+ 1)

From (11) one knows « € (—2, —1), and thus the term g(x) :=
#=20Cx+e) takes jts maximum value at X € (0, 1) given by

X(1—x)
a—/—a(3+a)
T3 15<a < -1,
X= 0.5, o =-—1.5, (13)
a+/—a(3+a)
3724 2<a<-—15

Rearranging (12) yields

div gf (1) _ p(1—2%)(3R+a) _  O(bc — ad)
o) X(1-%) G
(1 —2a)X + a — 4%° 6(bc — ad)
- X(1—%) K=o

t (1—20)8+a—4%°
X(1-%)

a € (—2,—1). Since ¢(x, r) is positive in int(Z) by definition, if

ad — bc > 0, from (14) one has div ¢f (x, r) < 0 when

6(bc — ad)x(1 — x)
0+ 1)¢[(1 —20)x + o — 4x2]
And because the divergence is not identically zero in int(Z), from

the Bendixson-Dulac criterion, one knows that no closed orbits
can exist in int(Z) for u > uo.

It is easy to check tha is negative for any value of

n = o == (15)
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For the second case, it is easy to prove since the right hand side
of (14) will always be negative for any i > 0. For the third case,
the right hand side of (14) is always negative when u > 0. O

In Lemma 2, it is noted that the conditions for the non-
existence of periodic orbits depend on the relationship between
ad and bc. The reason is as follows: when ad — bc < 0, the
divergence div ¢f(x, r) will remain positive for any u € [0, 1]
in view of (14), which excludes the possibility of periodic orbits
in the phase space; when ad — bc > 0 or ad — bc = 0, there
exists some p such that div ¢f (x, r) equals 0. As a consequence,
it is possible for the system to have periodic orbits in these two
cases. Another point worth noting is that the only difference
between the second and third cases of Lemma 2 is that system
(4) may have periodic solutions for © = 0 when ad — bc = 0.
This possibility has been shown in Gong et al. (2018) and Weitz
et al. (2016). Despite the possibility of closed orbits under certain
conditions, for u = 0 it can be proven that limit cycles (isolated
closed orbits) are impossible to exist in (4) for all the parameter
space as summarized below in Lemma 3.

Lemma 3. System (4) has no limit cycles in T when u = 0.

The proof is presented in Gong et al. (2022). Details are omit-
ted here to conserve space.

3.2. Hopf bifurcation at the interior equilibrium

In this section we take u as the bifurcation parameter to study
the effect of different mutation rates on the system dynamics.
We investigate the possible bifurcations of the dynamics (4) as
u varies in [0, 1]. We analyze the stability of the interior equilib-
rium and prove that it involves a Hopf bifurcation which leads to
periodic orbits.

We first invoke the Hopf bifurcation theorem (Guckenheimer
& Holmes, 2000) which will be used to prove the existence of
stable limit cycles.

Theorem 4 (Hopf Bifurcation Theorem). Suppose that the system
y =F(y, p),y € R%, p € R has an equilibrium (yo, po) at which the
following properties are satisfied:

(1) the Jacobian DyF|y, ,,) has a simple pair of pure imaginary
?}genvalues A po) and A(po);
(2) FE Ny # 0.

Then the dynamics undergo a Hopf bifurcation at (yo, po), Which
results in a family of periodic solutions in a sufficiently small neigh-
borhood of (yo, po).

Then we make an assumption about some parameters of sys-
tem (4).
A

Assumption 5. We assume that 0 < ad — bc < 7

The following theorem demonstrates that the interior equilib-
rium (x*, r*) of system (4) undergoes a Hopf bifurcation.

Theorem 6. Under Assumption 5, the interior equilibrium (x*, r*)
of system (4) with the bifurcation paramezzter u undergoes a super-
critical Hopf bifurcation at u = uq := W, which leads to the
existence of stable limit cycles for p < w1 in the vicinity of 1.

Proof. To prove the existence of Hopf bifurcation, we need to
show that the two conditions of Theorem 4 are satisfied in system
(4). The Jacobian of the vector field of (4) at (x*, r*) is given by

6%(ad—bc)—pA —6¢
]* _ 0(0+1)¢ (9+1)3 (16)
| (0+1)(cO+d6% —11f)ab+bO>+1uB) 0 ’

92€2
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where
0=0>4+6>-6-1)
and
A= (a+c)1+06%+20%) + (b+d)20 + 62+ 6%).
Note that the off-diagonal entries

P S
=0 <
12 O+ 1)
and
(6 + 1)(cO + db? — p10)(ad + bO? + u16)
1= >0

92;2
because of (6). One can calculate the eigenvalues of J*

) Jn =+ \/]121 + 412)21

2
= RAw) £ (A (u)i.

2
It is easy to check that when u = uq == W the eigenvalues
are purely imaginary, i.e.,

R(Mu1)) =0,

(¢ + d6? — ub)(ab + bo? + ub)
() = 56 + 172

which implies that the first condition listed in Theorem 4 is sat-
isfied. In addition, the second condition is also satisfied because

dR(A(p)) —A

= < 0.
du 06 + 1)t

Then one can conclude that the dynamics (4) undergo a Hopf
bifurcation at 4 = 4. Since w varies in the interval (0, 1], to
guarantee the occurrence of Hopf bifurcation, the critical param-
eter value w1 should also be constrained in this interval, i.e., 0 <
n1 < 1, which leads to

AMp (17)

)

M1

A
0<ad—bc<—,

92
which is exactly Assumption 5. The Hopf bifurcation theorem
implies that a family of periodic orbits bifurcate from (x*, r*) for
some u in the vicinity of w;. Whether the bifurcated periodic
orbits are stable or not is determined by the so-called first Lya-
punov coefficient €1 at (x*, r*) when u = 4. If £; < 0, then these
periodic orbits are stable limit cycles; if £; > 0, the periodic orbits
are repelling. Following the computation procedure of calculating
£1 as presented in Kuznetsov (2004), we obtain £1(u) as below

6(bc — ad)¢((b+ d)(0° +26) + (a+ c)(20° + 1))

G(pr) = :
(1) 2030 + 114
(18)
where wy = \/ (°9+d62_g(leél(l";?bgzﬂlé). (18) is negative because

of (6) and Assumption 5. Thus, the bifurcated periodic orbits are
stable limit cycles.

Furthermore, in view of (17), for © < wq, (x*, r*) is unstable
since the eigenvalues have positive real parts. On the other hand,
the interior equilibrium is asymptotically stable for © > @, with
the negative eigenvalues. Hence, the stable limit cycles exist for
® < i in the vicinity of w. Since the bifurcation is associated
with stable limit cycles, it is a supercritical Hopf bifurcation. O

The relationship between ad and bc has played an important
role in Theorem 6 in the sense that Hopf bifurcation can only
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happen when ad — bc > 0. In view of the Jacobian (16), when
ad — bc < 0, J;; will remain non-positive no matter what value
o takes. Thus, as u varies in [0, 1], the stability of the interior
equilibrium does not change, which excludes the existence of a
Hopf bifurcation. On the other hand, when ad — bc > 0, to ensure
there is a Hopf bifurcation for i € [0, 1], Assumption 5 has to be
satisfied as proved.

From the Hopf bifurcation theory, we know that the limit
cycles generated from Hopf bifurcation have the amplitude of
O(/11 — w). Since Hopf bifurcation is a local bifurcation, the
obtained results only hold for w in the vicinity of wi. Next, we
will show that system (4) exhibits another type of bifurcation.

3.3. Heteroclinic bifurcation

In the case © = 0, it has been shown in Lemma 3 that the
system (4) cannot exhibit limit cycles for any parameters. We
show in this section that limit cycles may occur for © > 0 in
the vicinity of 0.

When u = 0, system (4) has four equilibria on the boundary
dZ. Denote the four equilibria respectively by E; = (0,0), E; =
(1,0), E3 = (1, 1), and E4 = (0, 1). Then, one can calculate the
Jacobians at these points, which are

= |:g _01] , b= |:_Oa g}v 19)

pels o) [

It is easy to see that the eigenvalues of these equilibria are indeed
the diagonal entries of the associated Jacobian matrices, and thus
all of these equilibria are saddle points. Next we note that the
trace of each Jacobian, which is denoted by T;, is

Th=b—1,T,=0—a, 3=c—0, Ts,=1—d.

A heteroclinic cycle on the boundary denoted by A, which con-
nects the four equilibria and has the orientation E; — E;, —
Es — E4 — Eq, can be identified. Its stability is determined by
the payoff parameters.

Lemma 7. Consider system (4) at u = 0. There exists a heteroclinic
cycle A, which is stable (resp. unstable) when the condition ad > bc
(resp. ad < bc) is satisfied.

We refer to Ref. Weitz et al. (2016) for the complete proof for
the case of the stable heteroclinic cycle. And the opposite case
can be proved using the analogous method according to Hofbauer
(1994, Corollary 2).

When 1 > 0, the four corners are no longer equilibria, and
the heteroclinic cycle A is “broken”. Now we are going to show
that the system (4) undergoes a heteroclinic bifurcation at © = 0
when certain condition holds, and a limit cycle with the same
stability of the corresponding heteroclinic cycle may be generated
from A for 1 > 0 sufficiently close to 0.

Definition 8. The internal o-neighborhood of A is the set of all
points in Z that are at a distance less than o > 0 from A.

Theorem 9. Consider system (4). Ifa > 6, b < 1, ¢ < 6, and
d > 1, then there exist o, € > 0, such that for 0 < u < ¢, there is
at most one limit cycle I" in the internal o -neighborhood of A, and
I (if it exists) is stable.

Proof. The proof is straightforward by applying the theorem
of the heteroclinic bifurcation (Luo, Wang, Zhu, & Han, 1997,
Theorem 2.3.2, 2.3.3). Whena > 6,b < 1,c < #,andd > 1
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Fig. 2. Phase portraits of the dynamics in (4) with payoff matrices as shown
n (20). The red stars denote the unique interior equilibrium (0.5, 0.6809). The
blue and green cycles show the approximated limit cycles when (a) « = 0.005;
(b) u = 0.1540.

hold, which implies ad > bc. Then according to Lemma 7, there
is a heteroclinic cycle when © = 0 and it is stable.

In addition, all the traces T; of the Jacobians of the equilibria
are negative, while their product ]_[?:1 T; is positive. Then accord-
ing to Luo et al. (1997, Theorem 2.3.3), there exist sufficiently
small o, € > 0 such that for 0 < u < ¢, system (4) has at most
one limit cycle in the internal o-neighborhood of A, and this limit
cycle (if it exists) is stable due to the stability of A. O

When ad < bc, according to the second statement of Lemma 7,
the heteroclinic cycle is unstable. It is impossible for limit cycles
to be generated from this unstable heteroclinic cycle in view of
Lemma 2, which claims that there are no closed orbits in Z for
any u > 0 when ad — bc < 0.

Compared with the result of Hopf bifurcation, the conclu-
sion of Heteroclinic bifurcation is relatively weaker since Theo-
rem 9 only states that there may exist a unique limit cycle in
some neighborhood of A. To study the exact conditions for the
existence of the unique limit cycle is beyond this work.

Another difference between the limit cycles generated from
Hopf bifurcation and Heteroclinic bifurcation is that the limit
cycle arising from Hopf bifurcation is small in size in the phase
space, as demonstrated in the simulation results in Fig. 2, while
the other can be large. In these simulations the payoff matrices
are given by

Ri Si]_[35 1 R, S| _[2 02 (20)
T, Py| |05 08| |T, Py~ |25 1.2(°
The parameter 6 is chosen to be 1, and thus the interior equilib-

rium is fixed and independent of w. In view of Theorem 6, the
Hopf bifurcation point is ©«; = 0.1543.

3.4. Global dynamics

As stated before, the limit cycle analysis for Hopf and Hete-
roclinic bifurcations are limited to the vicinity of the bifurcation
points since the used methods rely mainly on linearization. To
study if the limit cycle persists for © € (0, w1), it is necessary to
analyze the dynamics of (4) for all such u.

3.4.1. Boundary equilibria and their stability

Recall that the condition (6), which involves u, guarantees
that there is a unique interior equilibrium. For some given payoff
parameters and fixed values of 9, there may be some p such that
there is no interior equilibrium. In this case, the system dynamics
are relatively trivial since the trajectories will converge to some
limit sets on the boundary according to the Poincaré-Bendixson
theorem. In the following part, we concentrate on the situation
where an interior equilibrium always exists for all © € [0, 1].
Then, we have the following assumption.
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Assumption 10. We assume hereafter that —(fa + 6%b) <
(60 —1)(0 +1)* < 6c +6%d.

Assumption 10 ensures that there is a unique interior equilib-
rium point for all © € [0, 1] in system (4). It is noted that when
0 = 1, Assumption 10 is satisfied trivially.

It is easy to check that the boundary 97 : B, UB, U B, UB; itself
and each of its sides are invariant under (4) in the case u = 0.
When 0 < u < 1, the sides B; and B, remain invariant, while B,
and B, do not. As u varies, all the possible boundary equilibria
lie on the sides B; and By, but the positions of these equilibria
change. Let us try to determine the locations of the equilibria on
B and By.

Lemma 11. There is only one equilibrium on each side B, and
B; in system (4). Moreover, the equilibria are located in the sets
{(x,r) : x € (max{1/2,1/(6 + 1)},1), r = 0} and {(x,1) : X €
(0, min{1/2, 1/(6 + 1)}), r = 1} respectively.

Proof. See the full version (Gong et al., 2022) for the proof. O

One can examine the stability of these boundary equilibria by
evaluating the corresponding Jacobian matrices.

Lemma 12. All the boundary equilibria of system (4) are unstable
for p € (0, 1].

Proof. We only show the case on the side B,. For the case
of B;, one can obtain the same result analogously. Denote the
equilibrium on the side B, by (x;,0). We obtain its Jacobian
matrix as below

3% (b—a)—2u+b N

+ 2x(a — 2b) ; 21
0 O+ 1% —1

Jy =

where the symbol » stands for —xza(—c +d—a+b)—x;(d+b)+
xﬁz(—c +2d — a+ 2b). As the matrix is upper triangular, the entry
(0+1)x; — 1 is one of its eigenvalues. According to Lemma 11, one
has x; € (max{1/2, 1/(6+1)}, 1). Then the eigenvalue (641)x;—1
will be positive for any 6 > 0, which implies that the equilibrium
is unstable. O

By checking the sign of x on the left side B; and the right
side B;, one observes that it is always positive and negative
respectively. It can be easily verified that the vectors on these two
sides point inwards to int(Z). The sides B, and B; are positively
invariant under system (4), and thus the dynamics on each side of
By and B; are easy to analyze. For example, on the side B;, one has
F=0x>0atx=0and7 =0, % <0 at x = 1. As there is only
one equilibrium (x;, 0) on the side By, one can easily verify that
x > 0 for x € [0,x;) and x < O for x € (x;, 1]. Thus, trajectories
starting from By \ (x;, 0) will converge to the unique equilibrium
(x5, 0). The similar result can be obtained for the dynamics on 5;.

In addition, we can show that the boundary 97 is repelling for
n e (0, 1].

Lemma 13.
(0, 1].

The boundary 0T of system (4) is repelling for u €

Proof. See the full version (Gong et al., 2022) for the proof. O

With Lemma 13 in hand, we are ready to present some global
results of the system dynamics in 7.

Theorem 14. Under Assumption 5, for u € (o, 11, the interior
equilibrium (x*, r*) of system (4) is asymptotically stable, and all
trajectories starting from T \ (B; U By) will converge to (x*, r*).
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Proof. Recall the two critical parameter values po and wq, which
appear respectively in Lemma 2 and Theorem 6. One can check
that uo > w1 when Assumption 5 holds. Again according to
Lemma 2, it is impossible for system (4) to have closed orbits
in Z when © > . In addition, the interior equilibrium is
locally asymptotically stable in view of (16). Due to the fact
that the boundary 97 is repelling as shown in Lemma 13, any
trajectories starting from int(Z)\ {(x*, r*)} cannot converge to 97.
Then according to the Poincaré-Bendixson theorem, because of
the non-existence of closed orbits or other equilibria in int(Z),
the trajectories with any initial points in int(Z) \ {(x*, r*)} will
converge to (x*, r*). Similarly, trajectories starting from the sides
B; and B; also converge to (x*,r*). O

So the interior equilibrium is almost globally stable in system
(4), because almost all trajectories in Z (except for those starting
from B;UB}) converge to the stable equilibrium (x*, r*). We apply
similar terminology to the stability of the limit cycle when it is
stable and almost all trajectories converge to it.

3.4.2. Uniqueness of limit cycles in the case 6 = 1

Assumption 15. We assume that 6 = 1 henceforth.

Under Assumption 15, the enhancement effect and the degra-
dation effect are balanced. In this case, the system can be trans-
formed to a generalized Liénard system. However, the existence
and uniqueness of limit cycles for u € (0, i1] in the case 6 # 1
is still open.

Lemma 16. Under Assumption 5, when a + ¢ = b + d, the
system dynamics in (4) admit at most one limit cycle in int(Z) for

w € (0, p1)

Proof. Under Assumption 15, when a + ¢ = b + d, the interior
equilibrium, denoted by q* = (1/2, (a 4+ b)/(2(b + d))), is fixed.
And the system dynamics (4) are reduced to be

: x =x(1 —x)[x(d — ¢) — r(d + b) + b] + u(1 — 2x)

F=r(1-r)2x—1). (22)

We apply the transformation of the coordinates on (22), x —

X', r — 1 —1’, and obtain the following system

X =X(1-Xx)X(d—-c)+r(d+b)—d]
+ (1 —2x)

P=—r'(1—-r")2x —1).
The interior equilibrium g* of (22) now becomes g™ = (1/2, r'*)
with r"* = (a + b)/(2(b + d)). By using the change of variables
X — X+ 1/2 and ' — 7 + r’*, we can shift the equilibrium ¢*
to the origin of a new system as below

B - - 8uiXa(X) — 2uXx

% =a(®) [(d + b 4 SHaxe®) = 2ux “x]

a(X)

F=—2(FR,

(23)

which is defined in the region 7 = {(X,7) : X € (—1/2,1/2),F €
(=7, 1 — )} with a(X) = (1/4 — ¥?) and B(7) = (F + r"*)(1 —
7 — r'™*). The system is now in the form of the generalized Liénard
system (Sabatini & Villari, 2006).

One can observe that the functions «(X) and B(7) are always
positive in the domain. Multiplying the vector field of (23) by the
positive function 1/(«(X)8(7)), we obtain

- (24)
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where (7) = GHE F(x, F) = 220500 and g(X) = 2%. The
point-wise direction of the vector field of (23) is maintained in
(24). Hence the existence and uniqueness of limit cycles for the
two systems (23) and (24) are equivalent.

Under Assumption 5, if 0 < u < w1 holds, it can be validated

that there always exists a v = /“;l:l“ such that the following
conditions are satisfied:

(1) G(—v) = G(v) where G(X) := [, g(s)ds;

(2) VX € (—v, 0), the function ¥ — Fé}’é;? is strictly decreasing
bothon0 <7 <1—r"and —r"* <7 < 0; VX € (0, v), the

function 7 — F(’(“;r)) is strictly increasing both on 0 < 7 <
1—r*and —1"* <7 <0;

(3) VX € (—v, v), VI € (—r'™*, 1 —1’*), one has g(x)F(x,T7) < 0;

(4) VX ¢ (—v,v), VI € (—r'*,1 — r’*), one has F(x,7) > 0;
Vi € (—r"™*, 1 —r'*), the function X — F(X, F') is increasing
bothon —1/2 <X < —vandv <X < 1/2.

The detailed expressions of the functions involved in the above
conditions can be found in Gong et al. (2022). It is not difficult to
check these conditions, so the process is omitted here.

Then according to Sabatini and Villari (2006, Theorem 1, Cor-
rollary 1), system (24) has at most one limit cycle in Z. There-
fore, the original system (22) admits at most one limit cycle in
int(z). O

It is noted that when a+c = b+d, the coefficient of the cross
term xr is 0, and thus this cross term disappears in the system
equations of (22). So the nonlinearity of this system is reduced.
In this case, when system (22) is transformed into the Liénard
form, the properties (1) — (4) listed in the proof of Lemma 16
allow us to use the Liénard system theory to prove that there is
at most one limit cycle in int(Z) for u € (0, w1). Unfortunately,
those properties are not satisfied directly when a + ¢ # b + d,
and thus the existence and the number of limit cycles in this case
remain unclear.

Now we are in the position to present the last result of this
section about the uniqueness of limit cycle and stability of the
interior equilibrium.

Theorem 17. Under Assumption 5, when a+c =b +d,

(1) for u € (0, py), system (4) has exactly one limit cycle that is
almost globally stable;

(2) for w € [pq, 1], the interior equilibrium (x*, r*) is almost
globally stable.

Proof. Under Assumption 5, when a + ¢ = b + d, according
to Lemma 16, the system (4) has at most one limit cycle for
0 < @ < p1. As shown in Theorem 6, the eigenvalues of the
Jacobian at (x*, r*) have positive real parts, implying that it is
repulsive. Then all trajectories starting in the small neighborhood
of this equilibrium (excluding the equilibrium) will diverge, and
the existence of infinite many periodic orbits in the neighborhood
is excluded. From Lemma 13, one also knows that the boundary
dZ is repelling. According to the Poincaré-Bendixson theorem,
for any initial states in int(Z) \ {(x*, r*)}, its w-limit set must be
a closed orbit. If there are no limit cycles in int(Z) \ {(x*, r*)},
then every trajectory starting from int(Z) \ {(x*, r*)} will form a
periodic orbit, and an infinite number of periodic orbits will fill
int(Z)\ {(x*, r*)}. This contradicts the repulsiveness of the interior
equilibrium and the boundary (Sabatini & Villari, 2006).
Suppose in int(Z) \ {(x*, r*)}, there is some connected region
which consists of an infinite number of neutral periodic orbits
and is enclosed by two periodic orbits denoted by I'y and I5.
Then I'; and I3 must be limit cycles, which contradicts Lemma 16
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Fig. 3. The plot of a unique limit cycle of dynamics (4) with the given payoff
matrices in (25). The x-axis is the mutation rate w, the blue and red curves are
stable and unstable equilibria respectively, and the magenta curves show the
shape of stable limit cycles.

regarding the maximal number of limit cycles. Therefore, one can
conclude that there is exactly one stable limit cycle in Z, and it is
attractive for 7 \ (B; U By U (x*, r*)).

Note that whena+c = b+ d and 6 = 1, we have uy = 1.
Thus, the second claim is easy to verify according to Theorems 6
and 14. O

Fig. 3 shows the plot of the unique limit cycle of system
(4) when u changes from 0 to 0.4. The payoff matrices used in
the simulations are shown below, and they satisfy the condition
a+c=b+d.

Ri Si|_ |35 2 R, S| |2 02 (25)
T, P;| (05 1|0 [T, Py~ 3 32|
The Hopf bifurcation point is computed to be ©; = 0.1633. It can
be observed that the limit cycle “collides” with the heteroclinic
cycle lying on the boundary and the interior equilibrium as u

approaches 0 and 0.1633 respectively. In addition, it disappears
after u passes 0.1633.

4. Incentive-based control

In real biological and social systems, the mutation or ex-
ploration rate is usually small. For example, an extremely high
mutation rate for a biological entity may reach 1/400 per site as
reported in Gago, Elena, Flores, and Sanjuan (2009). As known
from Section 3, although the Hopf bifurcation point @1 depends
on the payoff parameters, limit cycles exist in system (4) for u <
1. It means that in many situations stable limit cycles persist
in the co-evolutionary dynamics of the game and environment.
On the one hand, the shapes and positions of limit cycles in
nonlinear systems are generally difficult to identify analytically;
on the other hand, such limit cycle oscillations, although different
than the (oscillating) tragedy of the commons, are not desirable
from a control point of view. In addition, considering the public
resource management, the issue of how to best govern common-
pool resources has long been a common concern in the field
of economics (Ostrom, 2015). Thus, in this section we intend
to study how to design suitable control policies such that the
following two objectives are attained:

(a). alleviate or even eliminate the oscillation;
(b). increase the environmental resource stock.

One needs to choose what the control input should be. Al-
though multiple possible approaches have been proposed in the
evolutionary games field, perhaps the most plausible control in-
put is to offer suitable incentives to be added to the payoff of
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the desired strategies (Riehl, Ramazi, & Cao, 2018). In this spirit,
now we consider that in each game interaction, the cooperator
receives certain constant incentive u > 0 from an external
regulating authority.

Recall that the entries on the first row of A(r) are the payoffs to
a C player. The external incentive will be added to the first row of
(1). Thus, the control input u is incorporated into the previously
defined payoff matrix (1) as follows

_ R & R, S u u
Ar)=(1-r) |:T1 P1:| +r |:T2 PJ + [0 O]

_ "Ry —Ri)+Ri+u 1r(S—S1)+S1+u

o r(h, —T)+T r(P, —Py)+Pr |’

(26)

Substituting (26) into Egs. (4) results in the following system with
the control input u

X =x(1—x)[xr(—c +d —a+ b)+ x(a —b)

—r(d+b)+b+ul+ pu(l—2x) (27)
F=r(1-r)2x—1).

To emphasize the effect of the control input u on the system
behaviors, we have assumed that the enhancement effect and
the degradation effect are balanced by fixing the parameter 6 to
be 1 (under Assumption 15). In the following part we will study
whether such a constant incentive can achieve the desired control
objectives.

4.1. Stable equilibrium

System (27) has a unique interior equilibrium which is given
by (x5, r¥) =(1/2,(a+b+2u)/(a+c+b+d)when0 <u <
(c + d)/2. It is noted that the interior equilibrium is shifted up
vertically, i.e., the x-coordinate of this equilibrium is the same as
the equilibrium of the system without control, while the value
of the r-coordinate increases. Then we evaluate the Jacobian at

|:adbc+(b+dac)u _

(x%, r¥), which is given by
—(a+b+c+d

I 2(a+b+c+d) 2p (+s++)i| (28)
c 2(a+b+2u)(c+d—2u) 0 :

(a+b+c+d)?
For this matrix, it is easy to identify that the real parts of its
eigenvalues are of the same sign, which is the same as the first
entry.

When u > (c+d)/2, no equilibria exist in the interior of Z, and
all the equilibria are located on the sides B; and By. For system
(27), if u > 0, it is easy to identify that the x-coordinate of the
equilibrium on B, is in the range x € (1/2, 1) by using a similar
approach in Lemma 11. Then the same argument of Lemma 12
is applicable, so one can ensure that this equilibrium is unstable
for int(Z). Similarly, on the side B¢, when 0 < u < (c + d)/2,
the equilibria are located in the range x € (0, 1/2), and thus they
are unstable. However, when u > (c + d)/2, the situation will be
different, and we have the following statement for the equilibria.

Lemma 18. Consider system (27). When u > (c + d)/2, on the
side By, there exists one equilibrium, denoted by (x}, 1), satisfying
xf € (1/2,1). And the other possible equilibria are all located in the
set {(x,r):x€(0,1/2), r =1}.

Proof. Details are omitted here. O
It is easy to check the stability of these equilibria by evaluating

the Jacobian.

Lemma 19. When u > (c +d)/2, the boundary equilibrium (x}, 1)
is locally asymptotically stable under system (27), while the other
equilibria (if they exist) are unstable.
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Proof. One can check the local stability of (x{, 1) by examining
the Jacobian which is given by
3(c —dx? +2(2d — ¢ — ulx?
[ )
—d+u—2p ) (29)
0 1—2x}

Ji=

where the symbol e stands for —x;“3(—c +d—a+b)—x{(d+b)+
x;‘z(—c +2d —a+2b). Note that the eigenvalues of J;* are actually
the two diagonal entries. According to Lemma 18, obviously the
eigenvalue A; = 1 — 2x{ is negative.

For the other eigenvalue X, = 3(c — d)x;‘2 +2(2d —c —ukxf —
d + u — 2u, one can prove it is negative in all the three cases
regarding the relationship of ¢ and d. To illustrate, we only show
the case of ¢ > d here, since the other cases are similar. Suppose
¢ =d+ € with e > 0. We have 1/2 < x{ < (u — d)/e, then one
can check that

Ay = (3% — 2x¥)e + (u — d)(1 — 2x7) — 2

< (3% — 2% )e + ex' (1 — 2xF) — 2

= (* = x)e —2u

< —=2u.
Thus, the eigenvalue A, is negative. The fact of two negative
eigenvalues ensures that the equilibrium (x{, 1) is locally asymp-
totically stable. The instability of other possible equilibria is easy
to check since there is always a positive eigenvalue in view of
(29). O

Then, we define a Dulac function which is similar to that in
Section 3.1

@e(x, 1) = X*(1 — x)P 7 =034(1 — )P0, (30)

where the parameters «, 8, y, and § are the same as in (11)
with 6 = 1. Denote the vector field of (27) by f.(x,r). After
the multiplication of ¢.(x, r), we compute the divergence of the
modified vector field ¢.f:(x, r) in int(Z), which yields

div @cfe(x, 1) = @c(x, lg(xX)u — 21 + (1.5 + a)u
_ (be—ad) (31)
T atbictd)”

with g(x) being the same as in (12), which takes the maximum
value at x as shown in (13).

Next we discuss in two cases and show that there always
exists some u such that system (27) has a stable equilibrium for
the whole interior.

Theorem 20. For system (27), when a + ¢ > b + d, there exists

some uy = YbEgQIaEbictd) g cp that

(1) if uy < (c + d)/2, the interior equilibrium (x}, r}) is almost
globally stable under u € (uq, (c +d)/2);

(2) if u; > (c 4+ d)/2, the boundary equilibrium (x§, 1) is almost
globally stable under u > (c + d)/2.

Proof. When a+c > b+d we havew = —(1+ <) €

(=2, —1.5), so the coefficient of the term with u in (31), i.e., 1.5+
«, is negative. Thus, if
ad —bc — (4 —gX)ula+b+c+d)
a+c—b—-d

the right hand side of (31) is always negative, which implies that
there are no closed orbits in Z.

By checking the Jacobian (28), one can see that the interior
equilibrium (x}, r}) is stable when
ad — bc —4u(a+b+c+d)

a+c—b—d '

u>u = , (32)

u=>u; =
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As g(x) > 0, we have uy; > uy. Then if u; < (c + d)/2,
one can choose some u € (uy, (c 4+ d)/2) such that the interior
equilibrium (x}, r}) exists and is asymptotically stable. Due to the
non-existence of closed orbits in Z and other stable equilibria, and
also because of the repulsiveness of dZ, one can conclude that
almost all trajectories will converge to (x}, r}') asymptotically.

On the other hand, if u; > (c+d)/2, one can choose some u >
(c+d)/2 which leads to the occurrence of the equilibrium (x}, 1).
In view of (29), the equilibrium (x{, 1) is locally asymptotically
stable. The other equilibria on B; and By, are all unstable, and they
are located on the sets whose sufficient close neighborhoods in
int(Z) are repelling. Hence, it is impossible for trajectories starting
from int(Z) to converge to these points. As a consequence, (x}, 1)
is the only w-limit set for all initial states in int(Z) from the
Poincaré-Bendixson theorem. Similarly, this result extends to the
sides B; and B, by following the preceding analysis. O

Theorem 21. For system (27), when a 4+ ¢ < b + d, the boundary
equilibrium (x}, 1) is almost globally stable under u > (c + d)/2.

Proof. When a + ¢ < b + d, the first entry of (28) will
always be positive for any u if % — 21 > 0, in which
case the equilibrium will always be unstable (saddle). Thus, it is
impossible to stabilize the interior equilibrium with any positive
u if it is unstable in the uncontrolled system. However, one can
choose some u > (c+d)/2 such that there is an equilibrium (x}, 1)
on B; which can be proved to be almost globally stable by using

the same argument in the second case of Theorem 20. O

In Theorems 20 and 21, the relationship between a+c and b+d
determines whether the interior equilibrium can be stabilized
or not under the positive control input u. In view of (28), one
can observe that the stability of the interior equilibrium can be
changed from unstable to stable when a + ¢ > b + d under a
suitable u, while the stability is not qualitatively affected by u
whena+c <b+d.

When there exists an equilibrium that is globally stable for
Z, obviously the limit cycle oscillation is eliminated, no mat-
ter whether this stable equilibrium is in the interior or on the
top side. The second designed goal is also achieved, since the
r-coordinates of the equilibria are higher. One can find some
illustrations in Fig. 4.

4.2. Reduced amplitude of the limit cycle

For the case of a + ¢ b + d, although it is impossible
to stabilize the interior equilibrium with a suitable u, one can
observe that the amplitude of the oscillation on r-coordinate
decreases under some small u.

As a+ ¢ = b + d, it is noted that the control input does not
affect the stability of equilibrium (x}, r¥) according to the Jacobian
(28). However, one can transform system (27) into a form of
Liénard system as (24) in the same manner. Since the listed
conditions are satisfied straightforwardly, according to Lemma
16, for © < (0, 1), system (27) has a unique limit cycle when
u € [0, (c+d)/2). When there is some intermediate control input
u € (0, (c+d)/2), the corresponding interior equilibrium is shifted
towards the top side ;. To some extent, the vector field between
the interior equilibrium and the top side is “compressed”. The
position of the limit cycle is shifted up, and the amplitude of the
cyclic oscillation on r-coordinate is reduced at the same time. In
this sense, the oscillation is alleviated. Some numerical results can
be found in Fig. 5.
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Fig. 4. Phase portraits of dynamics (27) when a+c#b+d. (a) and (b) respectively
show the trajectories converge to a stable equilibrium in the interior and on the
boundary with different control inputs when a+c > b+d witha=4,b=1,
¢ =3,d=3, and u = 0.05. The control inputs in (a) and (b) are 2.8 and 3.5
respectively. (c) and (d) are for the case a4+c < b+d wherea=2,b=3,c =1,
d = 4, and u = 0.15. In (c) the interior equilibrium cannot be stabilized with
small control input with u = 1.8, but in (d) one equilibrium on the boundary
is stable under a large control input with u = 2.6.
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Fig. 5. Reduced amplitudes of oscillation of variable r when a +c¢c = b+ d
witha=3,b=1¢c=1,d=3, and u = 0.05. The first three plots show the
phase portraits with different values of u: (a) u = 0; (b) u = 1.6; (c) u = 2.1. (d)
shows that the amplitude of r of the limit cycle (approximated by the numerical
integration) decreases as u increases.

5. Conclusions and future work

We have investigated the co-evolutionary dynamics of the
game and environment when strategies’ mutations are taken
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into account. We used the replicator-mutator model to depict
the strategic evolution. By using bifurcation theory we showed
that the system at the interior equilibrium undergoes a Hopf
bifurcation which generates stable limit cycles; on the other hand,
we showed there is a heteroclinic bifurcation which may also
generate a stable limit cycle. Our analysis highlights the impor-
tant role that mutations play in the integrated system dynamics.
For the co-evolutionary system, the stable limit cycle corresponds
to a sustained oscillation of population’s decisions and richness of
the environmental resource. Compared with the neutral periodic
oscillation or heteroclinic cycle oscillation that have been exhib-
ited in previous studies using the replicator model, such limit
cycle oscillations can better explain the phenomena that appear
in real biological or social systems. Moreover, we proved that
under certain parameter conditions, the system always admits a
unique stable limit cycle which is attractive for almost the entire
domain.

Such a robust limit cycle oscillation may provide implications
and theoretical support for relevant studies in biology and soci-
ology. For example, in the microbial context, some cooperating
bacteria can produce costly public good, while the defecting bac-
teria only profit. Thus, the richness of the public good is enhanced
by the cooperating bacteria and degraded by the defectors. In
the process of bacterial reproduction, mutations are common. The
amount of mutant offsprings can have important impact on the
dynamic outcomes of the biological systems. For such microbial
systems, Brown and Taddei (2007) show that the dynamics can
converge to an interior equilibrium, while Weitz et al. (2016)
shows that persistent heteroclinic oscillations can exist. How-
ever, the results obtained in this work theoretically reveal that
a moderate limit cycle oscillation can exist in addition to the
convergence to a steady state or a heteroclinic cycle. Thus, this
work complements the previous studies.

We also considered the incentive-based control applied into
the co-evolutionary dynamics, and showed the effectiveness of
such control on maintaining the environmental resource. Namely,
compared with the uncontrolled system, the incentive will in-
crease the level of environmental resource in most cases. In
particular, one can apply some intermediate incentive to let the
system have an interior equilibrium that is stable for the whole
interior of domain. If the interior equilibrium cannot be stabi-
lized, some large incentive could be put into use to make the
system dynamics converge to a boundary equilibrium with full
environmental resource.

The obtained results in the control part of this work can pro-
vide valuable insights into many practical issues in nature, such
as the common-pool resource management, environmental and
sustainable development, and ecological diversity conservation.
For example, the global climate change is one of the biggest
challenges of our times. The strategic decisions of individuals,
corporations, and governments have long-term environmental
consequence that will, in turn, alter the strategic landscape those
parties face (Tilman et al., 2020). To mitigate the global warm-
ing, all concerned parties are called upon to reduce greenhouse
gas emissions. In such a socio-ecological system, the reduction
of greenhouse gas emissions can be taken as the environmen-
tal factor of interest. Policy-makers can design and implement
economic incentives aiming at adapting individual decisions to
collectively agreed goals (Sullivan, 2017). Hence, the incentive-
based policy proposed in this work shows the power of incentive-
based control policy and leads to some directions in mitigating
the global warming issue.

In this paper, we have used a more general and realistic model,
replicator-mutator dynamics, to describe the strategic evolution,
but the environment dynamics is still described by the simplified
logistic model. Thus, it is of great interest to study the game
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dynamics under different types of feedback of the practical envi-
ronmental resource, such as renewing or decaying resource. The
replicator or replicator-mutator equations describe the evolu-
tionary game dynamics in an infinite well-mixed population. Due
to this shortcoming, they are not suitable to study game dynamics
in finite or structured populations. Therefore, another direction
of future studies is to develop more appropriate individual-based
models to study the game dynamics under the environmental
feedback. Last but not least, in addition to the incentive-based
control, there could exist other kinds of control policies that can
be more effective in various specific situations.
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