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Abstract

Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the

brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is

increasingly recognized that astrocytes play a more direct and active role in brain function

and neural computation. On account of their sensitivity to a host of physiological covariates

and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes

may be particularly well poised to modulate the dynamics of neural circuits in functionally

salient ways. In the current paper, we seek to capture these features via actionable abstrac-

tions within computational models of neuron-astrocyte interaction. Specifically, we engage

how nested feedback loops of neuron-astrocyte interaction, acting over separated time-

scales, may endow astrocytes with the capability to enable learning in context-dependent

settings, where fluctuations in task parameters may occur much more slowly than within-

task requirements. We pose a general model of neuron-synapse-astrocyte interaction and

use formal analysis to characterize how astrocytic modulation may constitute a form of

meta-plasticity, altering the ways in which synapses and neurons adapt as a function of

time. We then embed this model in a bandit-based reinforcement learning task environment,

and show how the presence of time-scale separated astrocytic modulation enables learning

over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared

to dynamically homogeneous networks and conventional non-network-based bandit algo-

rithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit

learning over different time-scales and the conveyance of task-relevant contextual informa-

tion onto circuit dynamics.

Author summary

Astrocytes, a non-neuronal cell type, constitute a significant portion of all cells in the

brain, yet our understanding of their involvement in neural computation remains limited.

In this paper, we use computational modeling to examine how astrocytes may interact

with neurons to expand the types of activity and, ultimately, computations that neurons

can produce. Two features of astrocytes make them interesting in this context. First, a
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single astrocyte is able to modulate dozens of neurons and synaptic connections between

them. Furthermore, this modulation occurs at slower temporal scales than the neural

activity itself, thus meaning that astrocytes could have long-lasting effects on neural activ-

ity and connectivity. Our computational models capture both of these features. Using

these models, we show that networks with astrocytes can more readily adapt to slowly

varying task parameters versus those with neurons alone. We further analyze the models

to understand, in mathematical terms, why such effects may arise. Our results shed light

on the potential computational role of this common, but enigmatic type of brain cell.

Introduction

The role of non-neuronal cells such as glia in neural computation has been the topic of increas-

ing interest over the past decade [1–3]. In the mammalian brain, glia comprise a significant

proportion of all cells, comparable to that of neurons [4]. However, their functional role has

traditionally been viewed as one of maintaining the basic physiological needs of neurons [5–

7]. This view has now been repeatedly challenged owing to a decades-long stream of evidence

that these cells directly modulate neuronal signaling [8, 9]. The simple premise here is that the

computational power of the brain should be conferred by all cells collectively populating the

brain, and not merely by neuronal activity [8–11]. That is, the effects of glia on brain function

and neuronal activity exist, and hence must matter. This notion opens up richer and more

expansive hypotheses regarding the mechanisms underlying brain computation, including

ways by which neuromodulation of networks may be achieved and mapped to function.

In the current work, we zero our attention on astrocytes, a prominent type of glial cell

within the nervous system. Collective work in the field of astrocyte biology has repeatedly pro-

vided evidence on the instrumental role of astrocytes in controlling neuronal functions such as

synaptic wiring, synaptic activity, synaptic memory, and neuronal excitability [12–20], reflect-

ing the potential of astrocytes to control key computational loci in the brain. However, directly

probing the role of astrocytes in brain computation has been virtually impossible at the experi-

mental level due to limited knowledge surrounding their rules of engagement and signaling

mechanisms, combined with their non-binary rules of ‘excitability’, and our inability to specif-

ically target their neuron-bound modulatory functions without affecting their more general

‘homeostatic’ roles. Additionally, the multiplex nature of astrocytes, whereby a single astrocyte

is capable of a multitude of inhibitory, excitatory, or modulatory outputs, distinguishes them

in general from neurons. Lastly, the incomplete toolkit available to manipulate them exacer-

bates the challenge. On the contrary, computational neuroscience provides an ideal play-

ground to probe the role of astrocytes in circuit computation by way of mathematical and

algorithmic modeling. So far, the absence of a consensus framework on how to conceptualize

astrocyte’s contribution to brain computation in a reductionist way has made it difficult to

meaningfully abstract astrocyte functions in computational models. Interestingly, a new

hypothesis called “contextual guidance” was recently introduced that potentially alleviates

these issues [8]. It posits that astrocytes act as a contextual switchboard that actively conveys

information about the environment and physiological state of the organism to neuronal net-

works. More generally, accounting for astrocytes, and other glial, in neural computation theory

may close gaps in how neural circuits learn and implement functions in a manner sensitive to

context. For example, an extant issue in theoretical neuroscience pertains to how different but

functionally overlapping tasks may be embedded in a single neuronal circuit [21–23]. Such a

scenario would seemingly require mechanisms by which different neuronal dynamical regimes
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may be learned and then recruited, in a context/task-dependent fashion. The goal of this paper

is thus to introduce computational modeling and analysis to probe how astrocytes may enrich

the computational capability of neural circuits toward such objectives.

Astrocytes contain distinct physiological features relative to neurons. They have slow time-

scales of activation, on the order of seconds or slower. Indeed, while approximately 9% of

spontaneous astrocyte intracellular calcium events have kinetics of hundreds of milliseconds,

most calcium events are documented in the time-scale of seconds and astrocytic outputs and

responses to stimuli commonly extend over several tens of seconds. This fact makes them easy

to dismiss from the perspective of fast computation. However, these slow time-scales of astro-

cytes may in fact be a computationally-relevant feature in light of the specific ways in which

astrocytes interact with neurons. In particular, neural network function is often viewed

through the lens of synaptic connectivity, wherein specific synaptic ‘weight’ configurations are

associated with different tasks [24–27]. However, a single astrocyte can impinge on dozens of

neurons and hundreds of thousands of synapses, and, for decades now, physiological experi-

ments have indicated that astrocytes possess the capability to gate and influence synaptic plas-

ticity [14, 28–30]. This astrocyte-induced synaptic plasticity belongs to a form of meta-

plasticity as outlined in [31]. Along these lines, the involvement of astrocytes in meta-plasticity

was further theoretically formalized and modeled in [32]. These prior works substantiate the

notion that astrocytes can impact important physiological learning processes. In the current

paper, we set forth to examine astrocytic meta-plasticity at a network scale that can be linked

to complex functional settings.

Such a framework would represent a shift from common conceptualizations of neural com-

putation that rely on homogeneous neural units, and thus explain how information processing

mechanisms may be enacted over different temporal scales. This, in turn, may better reconcile

models of algorithmic learning with the physiological realities of the brain. In fact, recent work

has argued that astrocytes may implement a transformer-like model of attention in multi-task

adaptation and learning in feedforward architectures [33]. In [34, 35], it is shown that neuron-

astrocyte interactions can lead in turn to distinct patterns of neural activity in working mem-

ory tasks through mean-field network model analyses. In [36], neuron-astrocyte interactions

are modeled within neuromorphic spiking neural network architectures, also in the context of

memory. There, the model is deployed in image recognition tasks via supervised learning,

where it is shown that the presence of slow astrocytic calcium signaling can improve memory

performance. Other biophysical and phenomenological models of neuro-astrocyte interactions

have also been considered [37–39], however, most of these models are focused on one precise

astrocyte output or function (such as glutamate release) or on explaining or recapitulating cir-

cuit-level phenomena (e.g., neuronal firing rate activity), rather than connecting to higher-

level functions. In the current paper, we focus our attention on the network dynamics of neu-

ron-astrocyte interactions in a rate-based recurrent network and reinforcement learning sce-

nario. Specifically, we study neuron-astrocyte interactions with a focus on two dimensions: (i)

the dynamics of recurrent interplay of neuronal activity and astrocytic modulation, and (ii) the

functional salience of such dynamics in reinforcement learning scenarios. The correlation

between network dynamics, e.g., vector fields, attractors, etc., and different functions is itself a

crucial area of study in theoretical neuroscience [40]. Furthermore, there is recognition that

leveraging the multiple time-scales and heterogeneous structures of recurrent neural networks

to design models for learning multiple, sequential, and temporal tasks [41–44]. As such, add-

ing astrocytes to traditional recurrent neural network architectures could thus further expand

the expressiveness of these networks [45–47]. Our goal here is to further explore this emerging

question.
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Motivated by the above, we seek to develop and study a simplified dynamical systems

model of neuron-astrocyte interaction in order to gain fundamental insight into how the

time- and spatial-scale separation between astrocytes and neurons may enrich the repertoire

of neural dynamics and activity. Our models are built in a bottom-up fashion, using well-

established biophysical paradigms combined with validated theories of astrocytic modula-

tion of neuronal dynamics and synaptic plasticity, such as described above. Furthermore, we

seek to understand how astrocyte-driven dynamics may enable learning over disparate time-

scales and in context-dependent task scenarios, consistent with the contextual guidance

hypothesis [8]. For the latter, we choose to focus on decision-making problems and rein-

forcement learning (RL) scenarios, given their relevance and ubiquity in algorithmic learn-

ing and prior observations that astrocytes can participate in the encoding of reward

information [48, 49].

We proceed to formulate a novel bio-inspired dynamical systems model of neuron-astro-

cyte interactions, and then embed this model in algorithmic optimization frameworks to solve

context-dependent bandit tasks. Our major contributions include the dynamical systems anal-

ysis of this model, and understanding astrocytic modulation as a pseudo-bifurcation parame-

ter that can switch neural and synaptic dynamics between different dynamical regimes via

meta-plasticity. Herein, astrocytes will form a ‘second-order’ modulation on the time-evolu-

tion of synaptic weights, resulting in different generative dynamics of neural activity. We fur-

thermore show that the structure and time-scale separation of astrocytes relative to neurons is

enabling in terms of learning non-stationary bandit problems, exceeding the learning perfor-

mance of well-established algorithms in this domain. It is worth emphasizing that our goal is

not to introduce specific dynamics to the model and ascribe these to astrocytes. Rather, we

ground our model in extant biological evidence regarding neural-astrocyte interaction which

can be linked to specific hypotheses from the contextual guidance framework regarding the

role of said interactions.

Results

Neuron-astrocyte interactions constitute a hypernetwork with multi-scale

dynamics

We proceed to develop a reduced model of neuron-astrocyte interaction that captures key

aspects of neurobiology while enabling fundamental analysis regarding dynamical expressive-

ness and links to function.

Neuron-astrocyte structure as a hypernetwork. Classically, biological interactions

between neurons, astrocytes, and synapses have been conceptualized in terms of the tripartite
synapse structure [11, 50, 51] (as shown in Fig 1A). Within this framework, astrocytes interact

with neurons at synapses, modulating synaptic efficacy [52] and controlling synaptic plasticity

[53]. Such interactions may occur in a higher-order and ‘closed-loop’ fashion, wherein astro-

cytes respond to neurotransmitters released during pre- and post-synaptic neuronal activity

(see Section A in S1 Appendix for detailed description) and this has been the mainstream

assumption in past work attempting to model astrocytes. While this description may capture

an important dimension of neuron-astrocyte interaction, it is increasingly clear that astrocytic

modulation of neuronal activity is more general and multifaceted. The contextual guidance
hypothesis [8] espouses that astrocytes regulate synaptic activity not only in response to synap-

tic activity itself, but also as an adaptative response to external drives, such as vigilance state,

sensory salience, metabolic load, or underlying pathology (see Fig 1A). As such, astrocytes

may actively ‘control’ neural dynamics in a state-dependent manner [34, 35]. While we focus

here on effects at the synapse via the release of astrocyte-derived neuroactive transmitters, in

PLOS COMPUTATIONAL BIOLOGY Astrocytes as a mechanism for contextually-guided network dynamics and function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012186 May 31, 2024 4 / 24

https://doi.org/10.1371/journal.pcbi.1012186


principle astrocyte modulation can also occur at cell bodies via the alteration of ionic condi-

tions, notably potassium levels [6, 19, 54–56].

The above schema of neuron-astrocyte interactions is difficult to capture as a traditional

graphical network representation. As a result, we introduce the framework of a hypernetwork

to describe the neuron-astrocyte architecture (see Fig 1B for the illustration and detailed

description in Section B in S1 Appendix). We distinguish neurons and astrocytes by represent-

ing them on two different layers of the network. The interlayer relationships are all hyperedges,

which embody the ability of astrocytes to modulate neuronal synaptic activity and therefore

neuronal activity indirectly.

Multi-scale neuronal and astrocytic dynamics. The hypernetwork formulation alone

does not capture the full complexity of neuron-astrocyte interaction, as it does not explicitly

contain information about the time-scales and dynamics of neuronal and astrocyte activation.

For this, we introduce a set of ordinary differential equations (ODEs) overlaying the hypernet-

work:

tn _xi ¼ � aixi þ
Xn

j¼1

wij�ðxjÞ þ ui; i ¼ 1; . . . ; n; ð1aÞ

tw _wij ¼ � bijwij þ cij�ðxiÞ�ðxjÞ þ dijcðzkÞ; i; j ¼ 1; . . . ; n; ð1bÞ

ta _zk ¼ � ekzk þ
Xm

l¼1

fklcðzlÞ þ gk; k ¼ 1; . . . ;m; ð1cÞ

gk ¼ hk�ðxiÞ�ðxjÞ þ vk: ð1dÞ

These dynamical equations are based on firing rate descriptions of neural activity (see Methods

for modeling details). Here, xi describes the rate of the neuron i = 1, . . ., n, wij is the weight of

the synapse (i.e., the synaptic efficacy) between neurons i and j, and zk represents the activity

(abstracted from calcium activity) of astrocytes k = 1, . . ., m. Here we emphasize that zk
embeds a graded but non-linear transformation between the inputs to astrocytes and their out-

put onto neurons. There exist many models for describing the dynamics of neurons, and the

one we use is, in essence, a continuous-time rate-based recurrent neural network (RNN) [57].

For the edge weights between neurons, we prescribe a Hebbian plasticity rule wherein weight

Fig 1. A. In a tripartite synapse, the presynaptic axon and postsynaptic dendrite are surrounded by an astrocyte [11,

50, 51], enabling multifaceted effects of neurotransmitters and (astrocyte-derived) gasotransmitters. B. A graphical

illustration of the neuron-astrocyte hypernetwork: the circles and stars represent neurons and astrocytes respectively;

the colored triangles denote the hyperedges and represent the multiplexed intralayer interactions. C. Schematic

representation of the feedback interconnections between subsystems in the multi-scale neuron-astrocyte network

model.

https://doi.org/10.1371/journal.pcbi.1012186.g001
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changes are dependent on the correlation ϕ(xi)ϕ(xj). The signal ui conveys external inputs

onto neural dynamics.

To distinguish astrocytes from neurons, we use a different activation function (i.e., ψ(�)

6¼ ϕ(�)) and, most crucially, will assume that the time-scale τa is slower than that of neurons.

Specifically, a larger value of τn, τw, and τa implies a slower rate of time-evolution [58] of the

associated activity variables. Thus, the multiple time-scale feature of neuron-astrocyte pro-

cesses is readily captured in equations (1), with a suitable choice of the values of these

parameters. Completing the model, fkl denotes interactions between astrocyte l and k, allow-

ing for potential gap junctions-mediated communication between neighboring astrocytes

[59]. An important feature of the model is that astrocytes may be sensitive to contextual

information in accordance with [8], via gk. Here, we postulate two forms of context as speci-

fied in (1d). First, we consider a ‘circuit’ context, such that the astrocyte may have a sensitiv-

ity of second-order neuronal activity via the coefficient hk. Second, we formulate an

external context, motivated by the contextual guidance hypothesis, conveyed by the exoge-

nous ‘contextual signal’ vk. Such a signal may originate, for example, from the sensory

periphery [60]. The neuronal exogenous input ui may also contain such contextual

information.

The model above attempts to balance expressiveness, interpretability, and tractability. In

particular, we have not fully captured the spatial scale distinctions of astrocytes relative to

neurons here, since we restrict ourselves to only the case of two neurons within the domain

of a single astrocyte. We have, however, captured several important features of the astrocytic

contextual guidance hypotheses: (i) the presence of multiple, nested loops of feedback

between neurons and astrocytes, providing a diversity of mechanisms by which contexts can

propagate through astrocytes and affect neuronal activity, and (ii) the potentially orders-of-

magnitude separation in time-scales between neuronal activity and astrocytic modulation

thereof. Unlike previous abstractions such as [34], we do not assume spike-like dynamics

within astrocytes, since these cells are electrically inactive on a cell-wide scale. In total, astro-

cytes modeled here: (a) produce slow, graded activity (as a surrogate for calcium) that (b)

modulates neuronal excitability and synaptic plasticity and (c) is responsive to the circuit

and external context via feedforward and feedback signaling paths. It is of note that the

above neuron-astrocyte model is well-behaved from a dynamical systems perspective since

solutions exist, are unique, and are restricted to a bounded subspace (see Section C in S1

Appendix).

From a systems-level perspective, the dynamics of the neuron-astrocyte network can be

understood as the interaction between three subsystems, forming two closed-loops as shown

in Fig 1C. The first closed-loop consists of the subsystem of neurons (1a) and synapses (1b).

The second closed-loop involves the subsystem of astrocytes (1c), which transfers information

from neurons to synapses. By forming these closed-loops, the astrocytic process not only

directly modulates synaptic plasticity based on neural activity but also indirectly modifies syn-

aptic connections, shaping the dynamics of the network as a whole. This mechanism can facili-

tate the formation and evolution of attractors (e.g., fixed points) in the neural subsystem state

space, as elaborated below.

Astrocytic modulation acts as a pseudo-bifurcation parameter that changes meta-plas-

ticity and neural circuit dynamics. To analyze the dynamics of (1), we reduce it to its sim-

plest motif, i.e., the interaction of two neurons and a single astrocyte. Here, we assume that the

neurons form a reciprocal excitatory-inhibitory loop, itself a common canonical motif for cor-

tical interactions between pyramidal and inter-neurons. From (1), the neuron-astrocyte motif
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amounts to a set of 5 ODEs:

t1 _x1 ¼ � a1x1 þ w2�ðx2Þ þ u1ðtÞ

t1 _x2 ¼ � a2x2 þ w1�ðx1Þ þ u2ðtÞ

t2 _w1 ¼ � b1w1 þ c1�ðx1Þ�ðx2Þ þ d1cðzÞ

t2 _w2 ¼ � b2w2 þ c2�ðx1Þ�ðx2Þ þ d2cðzÞ

t3
_z ¼ � �z þ h�ðx1Þ�ðx2Þ þ vðtÞ:

ð2Þ

The dynamics of this system are asymptotically bounded (see Section D in S1 Appendix).

Within this bounded set, the motif may exhibit a unique fixed point, or multiple fixed points,

depending on parameterization. Fig 2B and 2C show the case of three fixed points under the

assumption that astrocytes evolve at a time-scale two orders of magnitude slower than neurons

and synapses (i.e., τ3 = 100τ1, τ2). Fig 2D illustrates the time evolution of a specific trajectory

within this landscape. As expected, z evolves much slower than the other variables. Notably,

this slowly-changing astrocytic activity variable seems to drive neural variables to transit

between nearly stationary regimes corresponding to phases 1 and 3 of astrocytic states in the

lower plot of Fig 2D, suggesting that astrocytes can systematically ‘control’ stationary neural

activity.

In order to understand this phenomenon in more detail, we performed a singular perturba-

tion analysis (see Section E in S1 Appendix) to better clarify the mechanisms by which astro-

cyte signals may be modulating neural dynamics. This analysis treats the astrocyte state as a

fixed parameter, premised on its relatively slow evolution relative to the neural dynamics. We

can then study how this parameter affects the vector field and attractor landscape of the neural

subsystem. Fig 2E provides the pseudo-bifurcation diagram of the above motif by showing the

position of the fixed points in the x1-dimension as a function of the ψ(z). When ψ(z) is small,

there is only one fixed point (the red line, also see Fig 2F). When ψ(z) is large, the neural sub-

system manifests three fixed points by means of a saddle-node bifurcation (see Fig 2G). In

other words, at the bifurcation point, there is a fundamental change in the shape of the neuro-

nal-synaptic vector field and hence dynamics. Thus, astrocytic modulation can drastically alter

the flow of neuronal and synaptic activity as a function of time. We hypothesize this mecha-

nism may be particularly powerful for the contextual guidance premise as it may enable astro-

cytes to reshape the dynamics of synaptic adaptation and hence neural computation, based on

exogenous contextual signals, e.g., via v(t). Thus, astrocytes form, in essence, a pathway for

context-guided meta-plasticity and targeted neuromodulation. Below, we probe this hypothe-

sis within the reinforcement learning task paradigm.

Neuron-astrocyte networks are able to learn context-dependent decision-

making problems

We apply the proposed multi-scale neuron-astrocyte network model to context-dependent

decision-making problems. We focus specifically on multi-armed bandits (MABs), a well-

known class of reinforcement learning problems, wherein an agent aims to maximize its

cumulative reward over time by selecting actions (arms) from a set of available options [61].

MABs find applications in various domains, including recommendation systems, clinical tri-

als, and cognitive tasks in neuroscience, as they provide a powerful framework for decision-

making under uncertainty [62]. While well-studied, this class of problems nonetheless poses

persistent challenges when environments are non-stationary. Our prevailing hypothesis is that

the disparate time-scales of signaling emanating from astrocytes can enable learning in such

settings.
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Fig 2. Neuron-astrocyte network motifs and dynamic properties. A. Graphical representation of the network motif; u1, u2, v include inputs from

other nodes of the hypernetwork as well as those from external sources. B, C. Several examples of trajectories in the state space (x2, w2, z) of the

network motif system, where the boxes show the starting points. The parameter conditions are a1 = 0.7, a2 = 0.6, b1 = 1.6, b2 = 1.7, c1 = 12, c2 =

−10, d1 = −4, d2 = 5, � = 0.6, h = 6, and τ1 = τ2 = 0.01, τ3 = 1. The system has three fixed point points, of which two are stable (red dots) and one is

unstable (blue dot). The system dynamics converge to these two stable fixed points. D. Trajectory associated with the thick phase curve from B, C.

illustrating two stationary regimes (indicated by phases 1 and 3 in the lower plot). E. depicts the bifurcation diagram of the neural dynamics with

respect to the astrocyte output ψ(z), where the red curve shows that one branch of fixed point always exists, while the blue curve shows how the

other branch of fixed points changes via the saddle-node bifurcation. F, G. Vector fields of the neuron-synaptic dynamics to either side of the

saddle-node bifurcation.

https://doi.org/10.1371/journal.pcbi.1012186.g002
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A standard MAB assumes a constant environment, in which the probabilities of reward

associated with different arms are stationary. Our goal, however, is to study the capacity of our

proposed neuron-astrocyte networks, by virtue of their time-scale separation, to learn in more

challenging non-stationary and/or context-dependent settings. Thus, we designed both sta-

tionary and non-stationary Bernoulli bandit environments (see Fig 3 and Multi-armed bandit

tasks in Methods) within which to evaluate learning efficacy.

Learning metrics. In MABs, a common figure of merit is the (pseudo) cumulative regret,

which is defined specifically in Bernoulli bandits by

RT ¼
XT

t¼1

ðmax
ai2A

mi � E½rt�Þ; ð3Þ

where T is the total rounds, μi is the mean of the action ai, which belongs to the action set A,

and rt is the reward derived by the agent at trial t with E½�� denoting the expected value. A

lower value of (3) indicates less accumulated loss and equivalently higher accumulated reward.

Additionally, we consider the convergence speed of the algorithm, which measures the time

taken by the agent for RT to reach an optimal value. Faster convergence is generally desirable

as it signifies more efficient learning by the algorithm.

Learning algorithm architecture. In order to evaluate the proposed neuron-astrocyte

model in these tasks, we require a learning/optimization method. For this purpose, we make

several implementation assumptions. First, we assume that the network emits an output via a

softmax operation, a typical form of network readout in neural network architectures. Second,

we assume that networks have access to a signal that contains information about the environ-

mental context (e.g., a change in arm probabilities, without overtly specifying the probabilities

Fig 3. A. The architecture of the learning algorithm. The three plots on the right represent a stationary Bernoulli bandit scenario where the arm means

remain (0.4, 0.8, 0.1) constantly over time, a flip-flop non-stationary Bernoulli bandit where Arm 2’s mean alternates between 0.92 and 0.042, and a

smooth-change non-stationary Bernoulli bandit where all arm means change according to a smooth periodic function, respectively. The left figure shows

the architecture of the learning algorithm. B, C, and D show the learning performance of the neuron-astrocyte (abbreviated as “Neuro-astro” in plots)

method relative to other learning methods for the stationary bandit task, where B is for a single run, C is the average result for 10 runs and D is the mean

and standard deviation of the asymptotic regrets (the UCB method is not compared in C and D, as it performs much worse than other methods).

https://doi.org/10.1371/journal.pcbi.1012186.g003
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themselves). Upon this architecture, we deploy a reinforcement learning method to optimize

all parameters of the model (see Methods). The architecture of our learning algorithm is

depicted in Fig 3A. Briefly, during a typical learning episode, the network outputs a policy for

action selection, i.e., a probability distribution over the possible actions (at the output of the

softmax). The bandit environment provides a reward to the agent in response, which is then

fed into an analytical loss function, for which a gradient can be defined and hence network

parameters updated. Crucially, this learning paradigm is agnostic to the specific network being

learned, i.e., we can train vanilla RNNs and other architectures with the same methodology.

This will allow us to make direct comparisons between the proposed neuron-astrocyte net-

work and other standard neural networks.

Performance comparison. We conducted a comprehensive learning performance analy-

sis of the proposed neuron-astrocyte network in comparison to other neural network architec-

tures (vanilla RNN, LSTM, GRU), all trained the same way using the above method. In

addition, we also deployed traditional algorithms for solving bandit problems, the Upper Con-

fidence Bound (UCB) and Thompson Sampling (TS) methods. The specific learning proce-

dures for all neural network-based methods are similar, as described in the above section.

Stationary case. Fig 3B–3D illustrates the comparison of the learning performance of dif-

ferent methods (neuron-astrocyte, LSTM, TS, vRNN, GRU, UCB) in a stationary bandit task

with arm probability settings of (0.4, 0.8, 0.1). Each method requires exploration of the envi-

ronment, resulting in high regret during the initial time steps. However, all methods eventually

converge with comparable rates and cumulative regret of the same order of magnitude. In par-

ticular, the neuron-astrocyte architecture performs similarly to the other network-based

implementations in this case. Single-run simulation results show that the neuron-astrocyte

method uses less time to converge (see Section F.1 in S1 Appendix). In addition, this method

tends to be robust as the tasks become more challenging due to the small distance between

arm probabilities (see Section F.2 in S1 Appendix).

Non-stationary case. However, in the presence of non-stationarity, the neuron-astrocyte

architecture displays significant gains in capability. Indeed, these networks can achieve almost

stationary regrets over time as shown in Fig 4A and 4B, with the former depicting results for

the flip-flop bandit and the latter for the smooth changing bandit. In contrast, other methods

consistently result in escalating regrets. It is important to emphasize again that the setup for

learning here is identical across all networks. These results are consistent across different non-

stationary scenarios, evident in both individual and multiple runs (see Section F.3 in S1

Appendix). In addition, similar learning performance is observed in scenarios with a different

number of actions (see Section F.5 in S1 Appendix), which suggests the generality of the neu-

ron-astrocyte method. These observations indicate that the neuron-astrocyte network is able

to leverage contextual signals and adapt its actions to the changing environment.

Time-scale separation is necessary for context-dependent learning. In order to probe

the mechanisms by which the neuron-astrocyte network achieves context-dependent learning,

we first focus on the time-scale separation between neurons and astrocytes. In our analysis

above, we showed how astrocytic modulation may function, in essence, as a form of meta-plas-

ticity wherein the time-scale separation enabled pseudo-bifurcations that could allow neuronal

dynamics to traverse different functional regimes. The question at hand is whether this mecha-

nism confers utility for context-dependent learning. To assess this, we varied the time-scale

separation (via τ) between astrocytes and neurons in our network, to probe the impact of this

feature on learning performance. As shown in Fig 4C (see also Section F.4 in S1 Appendix),

different τ have significant impacts on learning performance, to the extent that without time-

scale separation learning simply does not occur. This is seen for the case τ = 1, in which astro-

cytes and neurons have the same time-scale, indicating that the performance of the neuron-
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astrocyte network does not simply stem from the presence of additional units. Here, the cumu-

lative regret does not converge. When τ = 0.1, the agent can sometimes achieve stationary

asymptotic cumulative regret. This learning performance improves for greater time-scale sepa-

ration. For τ� 0.01 (that is, time scale separation greater than 2 orders of magnitude), the

agent can always adapt to the environment. Moreover, for greater time-scale separation with

smaller values of τ, there is less variability in the asymptotic regret (see Fig 4D).

Fig 4. Learning performance. Performance comparison of the neuron-astrocyte method relative to other learning

methods for non-stationary bandits: A. flip-flop switching and B. smooth changing. C, D. neuron-astrocyte learning

performance for different time-scale separation. E. Single learning traces for τ = 1 and τ = 0.01, highlighting the role of

time-scale separation in enabling RL over contexts. F. Astrocyte and synaptic activity projections for both contexts

(indicated as a and b) in early, middle, and late phases of learning, highlighting the formation of distinct synaptic

weight trajectories.

https://doi.org/10.1371/journal.pcbi.1012186.g004
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To understand the mechanism underlying this effect, we more closely examined the learn-

ing dynamics of individual model instances over the different τ values, especially the τ = 1 and

τ = 0.01 cases. As shown in Fig 4E, in the case of τ = 1, the network is able to learn solutions in

each context; however, upon switching, regret again accumulates, indicating an overwriting of

prior strategies as comparable to the phenomenon of catastrophic forgetting. On the other

hand, neuron-astrocyte networks with time-scale separation are able to reliably learn the flip-

flop bandit, indicating that they are able to gradually associate the contextual information with

the environment and protect previously learned trajectories. As shown in Fig 4F, the astrocyte-

mediated meta-plasticity appears to be engaged during the process of learning. Specifically, we

projected the trial-wise network activity along population vectors associated with astrocytes

(PCz) and synaptic weights (PCw). We observed that during learning, the network forms

distinct synaptic trajectories that asymptotically approach a fixed weight configuration. The

time-scale separation between astrocytic and synaptic activation is apparent when tracing the

initial stages of the trajectories. The astrocyte output is less sensitive overall to learning, likely

an important factor in preventing the context-wise overwriting of prior dynamics (see also

Discussion). Furthermore, another projection along the second principal component of astro-

cytic activity shows that the sign of astrocytic modulation changes across trials and contexts

(see Section F.8 in S1 Appendix), which indicates that astrocytic modulations of meta-plastic-

ity can be heterogeneous depending on task circumstances.

Discussion

Toward a fuller accounting of brain circuit dynamics

In this paper, we have examined the potential role of neuron-astrocyte interactions in context-

dependent learning, with a specific focus on reinforcement-based bandit problems. We began

by forming a simplified model of such interactions in the form of a dynamical system, leverag-

ing canonical descriptions of neural firing rate activity and several abstractions of astrocytic

activity and modulation that are based on extant neurobiological theory. In particular, we sim-

plified the dynamical description of astrocytes and focused on key aspects: (i) their orders-of-

magnitude time-scale separation from neurons, (ii) their modulation of synaptic processes,

(iii) their indirect modulation of neuronal firing rates, and (iv) their ability to engage in

response to contextual information. Our goal was to understand whether these aspects of neu-

ron-astrocyte interaction, which are known to exist in the brain, matter for network

computation.

Contextually-guided meta-plasticity and slow modulatory dynamics

From this perspective, our analysis indicates the potential for astrocytes to reshape neural and

synaptic vector fields in significant ways, such as in the formation of multiple stationary

regimes of activation and changing the geometry of synaptic weight evolution. Perhaps most

notably, astrocytes can modify the dynamics of synaptic plasticity, effectively switching the

network between slow and fast weight adaption regimes (see Fig 4F). This forms a powerful

mechanism by which astrocytes can use external and internal contextual information [8] to

shift networks between different modes of learning, which we view as a form of meta-plasticity

in the wide sense of that term.

One new and central premise to our work is the use of a contextual signal that is accessible

by astrocytes and neurons, with the premise that such a signal may embed task-relevant infor-

mation and/or other circuit contexts, which is highly consistent with the body or work show-

ing astrocytes ability to detect and respond to functionally salient physiological covariates such

as neuromodulators (e.g., dopamine), hormones (e.g., glucocorticoids), or local cytokines. Our
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abstraction of this signal may be viewed as overly strong, insofar as it presents ‘clean’ context

information to the network. From this perspective, we emphasize that all our alternative archi-

tectures, and especially the neuron-astrocyte model without time-scale separation, had access

to this information. Thus, it is not merely the presence of contextual signaling that augments

learning performance in our model, but the specific astrocyte-dependent dynamical mecha-

nisms by which this information alters neurons and synapses.

Following the above, we emphasize that our goal was not simply to add slow modulation to

neuronal networks, since this could be done in a myriad of ways. Rather we chose a specific,

biologically motivated and hypothesized pathway (involving astrocytes). While we cannot

exclude the role of all other slow processes, we do believe that the astrocyte meta-plasticity

pathway has unique advantages. To illustrate this, we pose a simple null model where we elimi-

nated astrocytes but added a slow, passive potassium gating to neurons (see Section F.7 in S1

Appendix). This null model enacts a slow time-scale, but without the nested feedback loop

structure that we believe is key to neural-astrocyte interaction. After the same training proce-

dure as in our primary results, we find that this null model can only learn the stationary (but

not the non-stationary) version of the task (see Section F.7 in S1 Appendix). This lends cre-

dence to the idea that the unique interactivity properties of astrocytes with neurons are impor-

tant to the hypothesized functional benefits.

Consistency with biology of spatiotemporal neuron-astrocyte interactions

In this paper, we have focused most of our attention on the temporal separation of neuronal

and astrocytic activity and have discussed the consistency of our parameters with known bio-

physics in this regard. However, equally interesting are spatial features such as the ratio of

astrocytes to neurons. In biology, the ratio of astrocytes to neurons is believed to be between

1:1.5 to 1:2 and we used the latter end of this range in our results. However, we also performed

a sensitivity analysis to examine whether dynamics change appreciably as a function of this

ratio. In the stationary case, an increased ratio positively influences learning performance,

leading to a reduction in asymptotic cumulative regret as more astrocytes are introduced.

However, the dynamic nature of the flip-flop bandit introduces a subtle impact on the ratio:

optimal cumulative regret occurs at intermediate ratios, whereas both excessively low and high

ratios detrimentally affect learning by increasing regret (see Section F.6 in S1 Appendix). It

turns out that the optimal ratio is around 7/10, hence our simulation observation is consistent

with the biology and indeed predicts a functional optimum within this range.

Astrocytic activity as a stabilizer of catastrophic forgetting

Catastrophic forgetting is a phenomenon in artificial neural networks that arises when net-

works are tasked with learning multiple tasks sequentially [63]. In this scenario, it often is the

case that previously encountered tasks are ‘overwritten’ when the algorithmic optimization

(i.e., learning) strategies are deployed to update the network parameters/weights to meet new

task demands. Our results indicate that astrocytic modulation of neuronal and synaptic

dynamics mitigates catastrophic forgetting. Here, we believe that the slow time-scale of astro-

cytes is instrumental in protecting previously learned network outputs upon encountering of a

new context. As described above, the slow activation of astrocytes makes them generally less

sensitive to parametric adjustment relative to neurons and synapses. Thus, their effects are

more stable context-to-context. Furthermore, as we have seen, astrocytes have the effect of

controlling neuronal and synaptic dynamics, such that those faster processes can occupy dis-

tinct regions of state space depending on astrocytic modulation. The combination of these two

phenomena means that astrocytes can effectively insulate the learned trajectories/dynamics of
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one context preventing overwriting when learning is engaged for a subsequent context. These

findings underscore the importance of dynamical heterogeneity in the brain and support the

functional advantages that astrocytes may confer.

Clearly, an important next step for these models will be to validate them with appropriate

experiments. As mentioned in the Introductions, tools for in vivo study of astrocyte function

have lagged relative to those for neurons. For those tools that do exist, e.g., to disrupt astrocyte

function [64], studies such as ours can identify salient behavioral paradigms within which

experiments may be conducted. Specifically, our model suggests that astrocytes contribute to

learning in context-dependent or, potentially, multi-task settings, more than they might in

simpler behavioral paradigms. This can be tested using adequate history-dependent learning

tasks and popular astrocyte silencing tools such as CalEx [65]. Hence, available tools could be

deployed to test formally the role of astrocytes in such scenarios. For example, by examining

the learning efficacy of rodents engaging multi-arm bandit paradigms [66].

Insights into algorithmic learning systems

While our goal in this paper has been to explore new theories regarding the potential signifi-

cance of neuron-astrocyte interactions in the brain, it is nonetheless interesting to consider the

implications of these results in the domain of algorithmic systems. We have already com-

mented on the fact that traditional algorithmic methods of learning bandit tasks have difficulty

in context-dependent settings, even in the presence of informative signaling. This begs the

question of whether neuron-astrocyte type architectures may have utility beyond the bandit/

reinforcement learning settings.

In this regard, there certainly exist recurrent neural networks designed to deal with multiple

time-scale features, notably LSTMs [67] and hierarchical RNNs [68]. The LSTM has an inter-

nal memory cell state that enables it to deal with tasks that involve long-term dependencies. In

hierarchical RNNs, multiple layers of RNNs are stacked on top of each other, where each layer

captures information at a different level of temporal abstraction. The lower layers focus on

short-term dependencies, while the higher layers focus on longer-term dependencies. The

multi-scale neuron-astrocyte network considered here is in the form of a feedback-connected

multi-layered network with different embedded time-scales, and hence may blend the different

features of these extant machine learning architectures. It is thus possible that this framework

may be extendable to other machine learning domains, especially ones involving disparate

time scale requirements such as meta-learning [69].

Limitations and features not explained

Our model suggests a key role of slow astrocytic modulation of synaptic plasticity in enabling

learning over long time-scales. This model effect was premised on prior theory and empirical

findings, including [14]. However, astrocyte interactions with synapses are heterogeneous

across and within brain regions (see [70] for instance) both in extent (number of synapses

impinged upon) and nature (pre-, postsynaptic, or both). Hence the effects we show in this

paper should be interpreted as a demonstration of sufficiency rather than necessity, and cer-

tainly not monolithically across brain areas. Importantly, we do not imply that all slow brain

dynamics are enacted by astrocytes. Indeed, recent evidence indicates that slow oscillatory

activity in the entorhinal cortex may enable information processing across minutes or longer

[71]. Our findings demonstrate that: (i) astrocytes are particularly apt to convey active, cal-

cium-mediated modulation of synaptic dynamics, and (ii) this modulation is particularly

potent in learning scenarios, relative to more diffuse and passive slow dynamics (e.g., potas-

sium, as discussed previously above). As also pointed out above, these results set up clear
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potential for future empirical work aimed at the disruption of astrocytic calcium signaling in

complex function.

Other important facets of astrocytes are their gap junction coupling, which is believed to be

a basis for a form of functional inter-connectivity, as well as their structured arrangement in

non-overlapping domains throughout the entire brain, something referred to as tiling [72].

While our model described nested feedback loops of astrocyte-neuron modulation (i.e., con-

nectivity), we did not explicitly explore the role of tiling and gap-junction couplings, leaving

this question as future work.

Methods

Multi-scale modeling of neuron-astrocyte network dynamics

In general, neural dynamics can be described by recurrent neural network models. Here, we

consider the biology-inspired continuous-time RNN (CTRNN) [57, 73]. Consider a group of n
neurons where each neuron is connected to some other neurons via synapses. Let xi 2 R be

the state of the unit i, which denotes the mean membrane potential of the neuron. Then, the

model of CTRNN is defined by ODEs

tn _xi ¼ � aixi þ
Xn

j¼1

wij�ðxjÞ þ ui; i ¼ 1; . . . ; n; ð4Þ

where τn> 0 and ai> 0 are the time constant and decaying parameter respectively, and ui is

the external input to unit i. ϕ(xj) is the activation function. It is noted that each unit i collects

the outputs ϕ(xj) (i.e., short-term average firing frequency) from all the connected neural units

in the network, weighted with the synaptic connection coefficients wij 2 R, where the positive

or negative wij indicates an excitatory or inhibitory synapse respectively.

Synapses are capable of modifying their strength via synaptic plasticity, which is usually for-

mulated as a learning rule where the change of a synaptic strength wij depends on the correla-

tion between the firing rate of a presynaptic neuron j and the firing rate of the postsynaptic

neuron i. We consider the Hebbian learning rule: the weight between two neurons strengthens

when they are correlated and weakens otherwise. This rule is defined mathematically by the

equation [74]

tw _wij ¼ � bijwij þ cij�ðxiÞ�ðxjÞ; ð5Þ

where bij> 0 is the decaying parameter; τw> 0 is the time constant; cij 2 R is a parameter

which indicates an existing synaptic connection when it is non-zero. When cij takes a positive

value, (5) is called the Hebbian learning, and the case with cij< 0 is anti-Hebbian learning.
In principle, neurons influence astrocytes by releasing neurotransmitters that induce cal-

cium ion elevations within astrocytes. Biophysically, the increase in calcium levels within indi-

vidual astrocytes can propagate to neighboring astrocytes over long distances, forming

calcium waves [75]. The mechanisms of this propagation may involve astrocyte to astrocyte

gap junctions, which are well validated biologically [59, 76] and are believed to form spatially

contiguous groups of astrocytes referred to as a network [77] (but also see astrocyte syncytium

[78]). Current biophysical mathematical models for astrocytes, including gap junction connec-

tivity, are excessively complex and not easily translatable for analytical and computational pur-

poses. In the development that follows, we propose a simplified model to describe astrocyte

dynamics based on [79], which abstracts the mathematical description of astrocyte-to-astro-

cyte connectivity within a network formulation.
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Consider a group of m astrocytes. Let zk 2 R be the state of astrocyte k which denotes the

activity of calcium wave. For the glial node zk, we assume the output of astrocyte calcium wave

is similarly defined by an activation function. To distinguish it from the neuron, we use a dif-

ferent function, for instance, the hyperbolic tangent function ψ(zk) = tanh(zk). Then, in the

absence of neuron-astrocyte interactions, the dynamics of zk is described by

ta _zk ¼ � ekzk þ
Xm

l¼1

fklcðzlÞ þ vk; k ¼ 1; . . . ;m; ð6Þ

where τa is a constant time parameter; fkl denotes the weight of the (network) connection from

astrocyte l to k; vk captures other external inputs. The usage of this phenomenological model

can be justified with analogous arguments in [34], where a neuronal leaky integrate-and-fire

model is used for astrocytes. Such a model is easy to modify to incorporate the neuro-synapse-

astrocyte interactions and greatly facilitates the numerical and analytical investigation as

shown in the first subsection of Results.

Stacking all the equations of neurons, synapses, and astrocytes together, we will arrive at the

mathematical model for the neuron-astrocyte network as a whole.

tn _xi ¼ � aixi þ
Xn

j¼1

wij�ðxjÞ þ ui; i ¼ 1; . . . ; n; ð7aÞ

tw _wij ¼ � bijwij þ cij�ðxiÞ�ðxjÞ þ dijcðzkÞ; i; j ¼ 1; . . . ; n; ð7bÞ

ta _zk ¼ � ekzk þ
Xm

l¼1

fklcðzlÞ þ hk�ðxiÞ�ðxjÞ þ vk; k ¼ 1; . . . ;m; ð7cÞ

where the additional terms dijψ(zk) and hkϕ(xi)ϕ(xj) with dij; hk 2 R are present to capture the

high-order interaction between neurons, astrocytes and synapses according to the description

in tripartite synapse structure. In system (7), there are n and m equations for x and z respec-

tively. The number of synaptic connections is flexible and denoted by o with m� o� n(n − 1).

Therefore, the dimension of system (7) is actually (m + n + o).

It is known that the activities of neurons, synapses, and astrocytes evolve on different time-

scales. Neural firing occurs in milliseconds, synapse plasticity changes at a slower speed, and

astrocyte processes take even longer, ranging from seconds to minutes. These varying time-

scales significantly impact information processing in neuron-astrocyte interactions. To investi-

gate the effects of these differences, we need to set the time-scale parameters, denoted as τn, τw,

and τa, to different values. To make the speeds of the evolution of these variables distinguish-

able, we have the assumption: 0< τn� τw� τa, with� indicating the former entity is much

smaller than the latter. As the main goal of this work is to study neuron and astrocyte compu-

tation, we set τn = τw for simplicity when applying the neuron-astrocyte model to solving the

tasks.

Dynamic context-dependent multi-armed bandit tasks

In the setting of a stochastic MAB, there is a set of actions (arms) A to choose from, and the

bandit lasts T rounds in total. In each round t, an agent (decision-maker) chooses one action

at 2 A and obtains a reward rt. The goal of the agent is to optimize the accumulated reward,

i.e., maxat2A
PT

t¼1
rt . We consider the Bernoulli bandits which belong to stochastic MABs. In

the context of Bernoulli bandits, the reward of each action is binary, either 1 or 0 depending
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the outcome is a success or failure. The reward ri of the i-th action is drawn from a Bernoulli

distribution, i.e.,

ri � BernoulliðmiÞ; i ¼ 1; . . . ; n;

where μi 2 [0, 1] is a constant denoting the mean of the distribution. Different actions have dif-

ferent μi where a larger value represents a higher probability of the successful outcome and

thus a higher expectation of the reward. The reward sequence up to time T is a random pro-

cess

frt � fBernoulliðmiÞg
n
i¼1
; t ¼ 1; . . . ;T:g ð8Þ

In the Bernoulli bandit, the goal of optimizing the accumulated reward is equivalent to mini-

mizing the cumulative regret (3). The standard Bernoulli bandit is stationary where all μi are

fixed over time. In addition to the stationary case, we further consider non-stationary variants

by making the means changeable and time-dependent. Two subcases are considered in this

work:

1. Flip-flop switching: the means μi of actions remain constant for a certain period of time,

and then abruptly transit to different values m0i 2 ½0; 1� at certain time instants.

2. Smooth changing: the means change according to a continuous function of time. Here, we

use the periodic function

miðtÞ ¼ m∗i S Q sin
2pt
P
þ

2pi
n

� �� �

; ð9Þ

where m∗i is a fixed value in [0, 1]; S(�) is the sigmoid function; P is used to control the period

of this function and the term 2pi
n makes that the action with the highest expected reward can

change between the available actions over time. When Q is large, this type of function is

dominated by an approximately constant value, such that it looks like a smooth square

wave. We set P and Q to 10000 and 100 respectively.

In dynamic bandits, when the arm means change over time and the action with the highest

mean switches, contextual information can be revealed to the agent. This contextual informa-

tion represents the changes in underlying contexts. Therefore, the tasks we considered become

context-dependent. We define the contextual signals as a scalar in all the simulations presented

in this work. However, it is important to note that these signals can also be expanded into a

multi-dimensional vector to accommodate more general settings.

Discrete-time neuron-astrocyte network

For simplification, we assume that the self-decay parameters are all one and the time-scales of

neurons and synapses are the same. Then, the neuron-astrocyte network model without inputs

can be rewritten in the compact form

t _x ¼ � xþW�ðxÞ

t _W ¼ � W þ CFðxÞ þ DcðzÞ

_z ¼ � z þ FcðzÞ þHFðxÞ;

ð10Þ

where x = [x1, . . ., xn]> and z = [z1, . . ., zm]> are state vectors for neurons and astrocytes;

W = [wij] is the matrix for synapse weights and _W denotes the element-wise derivative of W;

ϕ(x) = [ϕ(x1), . . ., ϕ(xn)]> and ψ(z) = [ψ(z1), . . ., ψ(zm)]> are vectors of activation functions

PLOS COMPUTATIONAL BIOLOGY Astrocytes as a mechanism for contextually-guided network dynamics and function

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012186 May 31, 2024 17 / 24

https://doi.org/10.1371/journal.pcbi.1012186


while F(x) is the flatten vector of the matrix [ϕ(xi)ϕ(xj)]; C, D, F, and H are the parameter

matrices with corresponding entries.

In (10), we have set the time constant for astrocytes to the unit, while time constants for

neurons and synapses are both τ� 1. In this way, τ is dimensionless and represents the time-

scale difference rate between neurons and astrocytes. Note that (10) can be rewritten equiva-

lently by a change of time, so that τ appears on the right hand side of _z .

By using the first-order Euler discretization method [80], we can transfer the continuous-

time neuron-astrocyte model to the discrete-time approximated version

xt ¼ ð1 � gÞxt� 1 þ gWt� 1�ðxt� 1Þ

Wt ¼ ð1 � gÞWt� 1 þ gðCFðxt� 1Þ þ Dcðzt� 1ÞÞ

zt ¼ ð1 � gtÞzt� 1 þ gtðFcðzt� 1Þ þHFðxt� 1ÞÞ;

ð11Þ

where γ is the discretization step size. In the following simulations, γ and τ are set to be 0.1 and

0.01 respectively. We use the sigmoid function ϕ(x) = 1/(1 + e−x) and the hyperbolic tangent

function ψ(z) = tanh(z) for neural and astrocyte layer in the simulations.

We incorporate this discrete-time neuron-astrocyte model as the hidden layer within the

entire learning network, where a pair of linear input and output layers are placed before and

after the hidden layer according to the machine learning convention. The input I 2 Rjuj and

the output y 2 Rjyj are feed into and read from neuron-astrocyte network after multiplied by

matrices W1
in;W

2
in and Wout. Therefore, the network as a whole is represented by

xt ¼ ð1 � gÞxt� 1 þ gðWt� 1�ðxt� 1Þ þW1
inItÞ

Wt ¼ ð1 � gÞWt� 1 þ gðCFðxt� 1Þ þ Dcðzt� 1ÞÞ

zt ¼ ð1 � gtÞzt� 1 þ gtðFcðzt� 1Þ þ HFðxt� 1Þ þW2
inItÞ

yt ¼Woutxt þ bout;

ð12Þ

where bout the bias vector with the corresponding dimension.

Reinforcement learning procedure

A key step of our study is the implementation of our model to reinforcement-learning para-

digms. Within this functional setting, at each trial, the agent (i.e., the neuron-astrocyte net-

work) is presented with a new reward. This reward is used to algorithmically optimize (i.e.,

train) the parameters of the model in a trial-wise fashion. In other words, at the conclusion of

the trial, the current parameters and outputs of the model, along with the current reward, are

used to evaluate a loss function (see below) that determines future parameter adjustments. The

research question at hand is whether the neuron-astrocyte architecture and dynamics enable

this form of learning to be efficacious. Table 1 summarizes all parameters, both fixed and train-

able, and their values in the model and training process.

The neuron-astrocyte network architecture comprises 128 neurons and 64 astrocytes

(except for simulations where we vary the neuron-astrocyte ratio), with randomly initialized

connections within each layer and interlayer hyperedges. The complete learning framework is

depicted in Fig 3A. We first initialize the matrices C, D, F, H with entries drawn randomly

from normal distributions with the zero mean, i.e.,

Mij �
1
ffiffiffiffiffiffiffi
NM
p N ð0; 1Þ;

where NM is the dimension of the focal matrix M. The elements of input and output matrices
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W1
in, W2

in, Wout and bias vector bout are initialized from a uniform distribution

Uð� 1ffiffiffiffiffi
NM
p ; 1ffiffiffiffiffi

NM
p Þ, where NM is again the dimension.

The dimension of the output yt is the same as the number of actions in the bandits, i.e., 3 in

most simulations. After multiplied by the readout matrix and plus the bias, the output is fed to

a softmax function, and it produces a probability distribution over the available actions

pt ¼ ½p1
t ; p

2
t ; p

3
t �. The probability of selecting the action ai 2 A is

pit ¼
eyi

P3

1
eyj
; i ¼ 1; 2; 3: ð13Þ

An action at is then sampled from this probability distribution and subsequently executed by

the agent. The bandit environment will provide the agent with a reward, represented as rat .
And according to [81], we use the loss function

L ¼ ð�rt � ratÞ log p
i
t;

where �rt is the average of rewards up to t and log pit is the logarithm of the probability.

We adopted the traditional policy-based RL algorithm REINFORCE for the network train-

ing [81]. The gradient of the loss function L is calculated and used to update the network’s free

parameters via the backpropagation (BP). During BP, we use the Adam method to optimize

the aforementioned matrices and vectors with the default learning rate of 0.001.

In the case of other RNN-based methods as described in the comparison section below, we

simply replace the neuron-astrocyte network with the alternative network models. To ensure a

fair comparison of a comparable magnitude of training parameters, all these conventional

RNNs are configured with 2 stacked layers, each consisting of 128 units. In the 2 stacked layers

structure, the first layer is forward-connected to the second layer: the external input (contex-

tual cues) is fed to the first layer, which has default trainable intra-connection weights; the out-

put of the first layer is fed to the second layer as the input associated with a trainable matrix;

and then the output of the second layer is further used to generate actions. The weights are ini-

tialized using a default method, and the training procedure remains consistent.

The network models and training procedures are implemented using PyTorch in Python.

Table 1. Parameters in the neuron-astrocyte model and model training.

Symbols Description Values

n number of neurons 128

m number of astrocytes 64

τ time-scale parameter 0.01

γ discretization step 0.1

I contextual cues stationary case: {1}

flip-flop: {−1, 1}

smooth: {−1, 0, 1}

W1
in;W2

in input weight matrices Trained

C, D matrices associated with synapses Trained

F, H matrices associated with astrocytes Trained

Wout output weight matrix Trained

bout output bias vector Trained

https://doi.org/10.1371/journal.pcbi.1012186.t001
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Learning performance comparison

Numerous machine learning algorithms have been developed to tackle MABs. Among them,

Upper Confidence Bound (UCB) and Thompson Sampling (TS) are widely recognized as the

most prominent approaches for standard MABs. Discounted UCB (DUCB) and switching-

window UCB (SWUCB) have been devised to handle changing environments in non-station-

ary scenarios. In addition to these canonical bandit algorithms, some neuro-bandit algorithms

that utilize feedforward or recurrent neural networks to model the agent’s policy have been

developed in recent years.

To perform a thorough yet not overly exhaustive assessment of learning performance, we

analyze the asymptotic cumulative regret of our approach in comparison to selective algo-

rithms across various scenarios. For stationary MABs, we evaluate our method against the

UCB and TS algorithms, as well as RNN-based models including LSTM, vRNN, and GRU. In

the context of non-stationary MABs, our method is compared to DUCB, SWUCB, and other

RNN-based algorithms. It’s worth noting that the training procedures for all RNN-based mod-

els remain consistent with the previously described methodology.

Supporting information

S1 Appendix. The supplementary appendix file contains the mathematical analysis of the

models and extensive simulation results stated in the main text.

(PDF)
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29. Falcón-Moya R, Pérez-Rodrı́guez M, Prius-Mengual J, Andrade-Talavera Y, Arroyo-Garcı́a LE, Pérez-
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